ترغب بنشر مسار تعليمي؟ اضغط هنا

Lattice Properties of PbX (X = S, Se, Te): Experimental Studies and ab initio Calculations Including Spin-Orbit Effects

256   0   0.0 ( 0 )
 نشر من قبل Reinhard Kremer
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

During the past five years the low temperature heat capacity of simple semiconductors and insulators has received renewed attention. Of particular interest has been its dependence on isotopic masses and the effect of spin- orbit coupling in ab initio calculations. Here we concentrate on the lead chalcogenides PbS, PbSe and PbTe. These materials, with rock salt structure, have different natural isotopes for both cations and anions, a fact that allows a systematic experimental and theoretical study of isotopic effects e.g. on the specific heat. Also, the large spin-orbit splitting of the 6p electrons of Pb and the 5p of Te allows, using a computer code which includes spin-orbit interaction, an investigation of the effect of this interaction on the phonon dispersion relations and the temperature dependence of the specific heat and on the lattice parameter. It is shown that agreement between measurements and calculations significantly improves when spin-orbit interaction is included.



قيم البحث

اقرأ أيضاً

We report ab initio calculations of the electronic band structure, the corresponding optical spectra, and the phonon dispersion relations of trigonal alpha-HgS (cinnabar). The calculated dielectric functions are compared with unpublished optical meas urements by Zallen and coworkers. The phonon dispersion relations are used to calculate the temperature and isotopic mass dependence of the specific heat which has been compared with experimental data obtained on samples with the natural isotope abundances of the elements Hg and S (natural minerals and vapor phase grown samples) and on samples prepared from isotope enriched elements by vapor phase transport. Comparison of the calculated vibrational frequencies with Raman and ir data is also presented. Contrary to the case of cubic beta-HgS (metacinnabar), the spin-orbit splitting of the top valence bands at the Gamma-point of the Brillouin zone (Delta_0) is positive, because of a smaller admixture of 5d core electrons of Hg. Calculations of the lattice parameters, and the pressure dependence of Delta_0 and the corresponding direct gap E_0~2eV are also presented. The lowest absorption edge is confirmed to be indirect.
Doping Bi$_2$Se$_3$ by magnetic ions represents an interesting problem since it may break the time reversal symmetry needed to maintain the topological insulator character. Mn dopants in Bi$_2$Se$_3$ represent one of the most studied examples here. H owever, there is a lot of open questions regarding their magnetic ordering. In the experimental literature different Curie temperatures or no ferromagnetic order at all are reported for comparable Mn concentrations. This suggests that magnetic ordering phenomena are complex and highly susceptible to different growth parameters, which are known to affect material defect concentrations. So far theory focused on Mn dopants in one possible position, and neglected relaxation effects as well as native defects. We have used ab initio methods to calculate the Bi$_2$Se$_3$ electronic structure influenced by magnetic Mn dopants, and exchange interactions between them. We have considered two possible Mn positions, the substitutional and interstitial one, and also native defects. We have found a sizable relaxation of atoms around Mn, which affects significantly magnetic interactions. Surprisingly, very strong interactions correspond to a specific position of Mn atoms separated by van der Waals gap. Based on the calculated data we performed spin dynamics simulations to examine systematically the resulting magnetic order for various defect contents. We have found under which conditions the experimentally measured Curie temperatures ${T_{rm{C}}}$ can be reproduced, noticing that interstitial Mn atoms appear to be important here. Our theory predicts the change of ${T_{rm{C}}}$ with a shift of Fermi level, which opens the way to tune the system magnetic properties by selective doping.
113 - S. Maier , S. Steinberg , Y. Cheng 2020
Understanding the nature of chemical bonding in solids is crucial to comprehend the physical and chemical properties of a given compound. To explore changes in chemical bonding in lead chalcogenides (PbX, where X = Te, Se, S, O), a combination of pro perty-, bond breaking- and quantum-mechanical bonding descriptors have been applied. The outcome of our explorations reveals an electron transfer driven transition from metavalent bonding in PbX (X = Te, Se, S) to iono-covalent bonding in beta-PbO. Metavalent bonding is characterized by adjacent atoms being held together by sharing about a single electron and small electron transfer (ET). The transition from metavalent to iono-covalent bonding manifests itself in clear changes in these quantum-mechanical descriptors (ES and ET), as well as in property-based descriptors (i.e. Born effective charge, dielectric function, effective coordination number (ECON) and mode-specific Grueneisen parameter, and in bond breaking descriptors (PME). Metavalent bonding collapses, if significant charge localization occurs at the ion cores (ET) and/or in the interatomic region (ES). Predominantly changing the degree of electron transfer opens possibilities to tailor materials properties such as the chemical bond and electronic polarizability, optical band gap and optical interband transitions characterized by the imaginary part of the dielectric function. Hence, the insights gained from this study highlight the technological relevance of the concept of metavalent bonding and its potential for materials design.
We present results of a study of small stoichiometric $Cd_{n}Te_{n}$ ($1{leq}n{leq}6$) clusters and few medium sized non-stoichiometric $Cd_{m}Te_{n}$ [($m,n= 13, 16, 19$); ($m{ eq}n$)] clusters using the Density Functional formalism and projector au gmented wave method within the generalized gradient approximation. Structural properties {it viz.} geometry, bond length, symmetry and electronic properties like HOMO-LUMO gap, binding energy, ionization potential and nature of bonding {it etc.} have been analyzed. Medium sized non-stoichiometric clusters were considered as fragments of the bulk with T{$_{d}$} symmetry. It was observed that upon relaxation, the symmetry changes for the Cd rich clusters whereas the Te rich clusters retain their symmetry. The Cd rich clusters develop a HOMO-LUMO gap due to relaxation whereas there is no change in the HOMO-LUMO gap of the Te rich clusters. Thus, the symmetry of a cluster seems to be an important factor in determining the HOMO-LUMO gap.
Electronic structure of FeGa3 has been studied using experiments and ab-initio calculations. Magnetization measurements show that FeGa3 is inherently diamagnetic in nature. Our studies indicate that the previously reported magnetic moment on the Fe a toms in FeGa3 is not an intrinsic property of FeGa3, but is primarily due to the presence of disorder, defects, grain boundaries etc that break the symmetry about the Fe dimers. Analysis of the results obtained from magnetic measurements, photoelectron spectroscopy, Fe K-edge X-ray absorption near edge spectroscopy and ab-initio calculations clearly indicates that, the effects of on-site Coulomb repulsion between the Fe 3d electrons do not play any role in determining the electronic and magnetic properties of FeGa3. Detailed analysis of results of single crystal and poycrystalline FeGa3, helps to resolve the discrepancy in the electronic and magnetic properties in FeGa3 existing in the literature, consistently.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا