We study theoretically the chirality of a generic rigid objects sedimentation in a fluid under gravity in the low Reynolds number regime. We represent the object as a collection of small Stokes spheres or stokeslets, and the gravitational force as a constant point force applied at an arbitrary point of the object. For a generic configuration of stokeslets and forcing point, the motion takes a simple form in the nearly free draining limit where the stokeslet radius is arbitrarily small. In this case, the internal hydrodynamic interactions between stokeslets are weak, and the object follows a helical path while rotating at a constant angular velocity $omega$ about a fixed axis. This $omega$ is independent of initial orientation, and thus constitutes a chiral response for the object. Even though there can be no such chiral response in the absence of hydrodynamic interactions between the stokeslets, the angular velocity obtains a fixed, nonzero limit as the stokeslet radius approaches zero. We characterize empirically how $omega$ depends on the placement of the stokeslets, concentrating on three-stokeslet objects with the external force applied far from the stokeslets. Objects with the largest $omega$ are aligned along the forcing direction. In this case, the limiting $omega$ varies as the inverse square of the minimum distance between stokeslets. We illustrate the prevalence of this robust chiral motion with experiments on small macroscopic objects of arbitrary shape.