ترغب بنشر مسار تعليمي؟ اضغط هنا

Chaos in a one-dimensional integrable quantum system

162   0   0.0 ( 0 )
 نشر من قبل Daniel Vasata
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We study a simple one-dimensional quantum system on a circle with n scale free point interactions. The spectrum of this system is discrete and expressible as a solution of an explicit secular equation. However, its statistical properties are nontrivial. The level spacing distribution between its neighboring odd and even levels displays a surprising agreement with the prediction obtained for the Gaussian Orthogonal Ensemble of random matrices.



قيم البحث

اقرأ أيضاً

130 - Yochai Werman 2020
A recent proposal by Hallam et al. suggested using the chaotic properties of the semiclassical equations of motion, obtained by the time dependent variational principle (TDVP), as a characterization of quantum chaos. In this paper, we calculate the L yapunov spectrum of the semiclassical theory approximating the quantum dynamics of a strongly interacting Rydberg atom array, which lead to periodic motion. In addition, we calculate the effect of quantum fluctuations around this approximation, and obtain the escape rate from the periodic orbit. We compare this rate to the rate extracted from the exact solution of the quantum theory, and find an order of magnitude discrepancy. We conclude that in this case, chaos in the TDVP equations does not correpond to phsyical properties of the system. Our result complement those of Ho et al. regarding the escape rate from the semiclassical periodic orbit.
We study a heavy-heavy-light three-body system confined to one space dimension. Both binding energies and corresponding wave functions are obtained for (i) the zero-range, and (ii) two finite-range attractive heavy-light interaction potentials. In ca se of the zero-range potential, we apply the method of Skorniakov and Ter-Martirosian to explore the accuracy of the Born-Oppenheimer approach. For the finite-range potentials, we solve the Schrodinger equation numerically using a pseudospectral method. We demonstrate that when the two-body ground state energy approaches zero, the three-body bound states display a universal behavior, independent of the shape of the interaction potential.
66 - Joerg Schmiedmayer 2018
In this chapter we will present the one-dimensional (1d) quantum degenerate Bose gas (1d superfluid) as a testbed to experimentally illustrate some of the key aspects of quantum thermodynamics. Hard-core bosons in one-dimension are described by the i ntegrable Lieb-Lininger model. Realistic systems, as they can be implemented, are only approximately integrable, and let us investigate the cross over to thermalisation. They show such fundamental properties as pre-thermalisation, general Gibbs ensembles and light-cone like spreading of de-coherence. On the other hand they are complex enough to illustrate that our limited ability to measure only (local) few-body observables determines the relevant description of the many-body system and its physics. One consequence is the observation of quantum recurrences in systems with thousand of interacting particles. The relaxation observed in 1D superfluids is universal for a large class of many-body systems, those where the relevant physics can be described by a set of long lived collective modes. The time window where the close to integrable dynamics can be observed is given by the lifetime of the quasi-particles associated with the collective modes. Based on these observations one can view (in a quantum field theory sense) a many-body quantum system at T=0 as vacuum and its excitations as the system to experiment with. This viewpoint leads to a new way to build thermal machines from the quasi-particles in 1D superfluids. We will give examples of how to realise these systems and point to a few interesting questions that might be addressed.
We study dynamical signatures of quantum chaos in one of the most relevant models in many-body quantum mechanics, the Bose-Hubbard model, whose high degree of symmetries yields a large number of invariant subspaces and degenerate energy levels. While the standard procedure to reveal signatures of quantum chaos requires classifying the energy levels according to their symmetries, we show that this classification is not necessary to obtain manifestation of spectral correlations in the temporal evolution of the survival probability. Our findings exhibit the survival probability as a powerful tool to detect the presence of quantum chaos, avoiding the experimental and theoretical challenges associated with the determination of a complete set of energy eigenstates and their symmetry classification.
71 - Wenjie Liu , Min Zhuang , Bo Zhu 2020
Entanglement preparation and signal accumulation are essential for quantum parameter estimation, which pose significant challenges to both theories and experiments. Here, we propose how to utilize chaotic dynamics in a periodically driven Bose-Joseph son system for achieving a high-precision measurement beyond the standard quantum limit (SQL). Starting from an initial non-entangled state, the chaotic dynamics generates quantum entanglement and simultaneously encodes the parameter to be estimated. By using suitable chaotic dynamics, the ultimate measurement precision of the estimated parameter can beat the SQL. The sub-SQL measurement precision scaling can also be obtained via specific observables, such as population measurements, which can be realized with state-of-art techniques. Our study not only provides new insights for understanding quantum chaos and quantum-classical correspondence, but also is of promising applications in entanglement-enhanced quantum metrology.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا