ترغب بنشر مسار تعليمي؟ اضغط هنا

Efficient tests for equivalence of hidden Markov processes and quantum random walks

299   0   0.0 ( 0 )
 نشر من قبل Alexander Sch\\\"onhuth
 تاريخ النشر 2010
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

While two hidden Markov process (HMP) resp. quantum random walk (QRW) parametrizations can differ from one another, the stochastic processes arising from them can be equivalent. Here a polynomial-time algorithm is presented which can determine equivalence of two HMP parametrizations $cM_1,cM_2$ resp. two QRW parametrizations $cQ_1,cQ_2$ in time $O(|S|max(N_1,N_2)^{4})$, where $N_1,N_2$ are the number of hidden states in $cM_1,cM_2$ resp. the dimension of the state spaces associated with $cQ_1,cQ_2$, and $S$ is the set of output symbols. Previously available algorithms for testing equivalence of HMPs were exponential in the number of hidden states. In case of QRWs, algorithms for testing equivalence had not yet been presented. The core subroutines of this algorithm can also be used to efficiently test hidden Markov processes and quantum random walks for ergodicity.



قيم البحث

اقرأ أيضاً

482 - Shuangping Chen , Jun Li , Mi Zhou 2011
In the paper, the approximate sequence for entropy of some binary hidden Markov models has been found to have two bound sequences, the low bound sequence and the upper bound sequence. The error bias of the approximate sequence is bound by a geometric sequence with a scale factor less than 1 which decreases quickly to zero. It helps to understand the convergence of entropy rate of generic hidden Markov models, and it provides a theoretical base for estimating the entropy rate of some hidden Markov models at any accuracy.
97 - Or Ordentlich 2016
Recently, Samorodnitsky proved a strengthened version of Mrs. Gerbers Lemma, where the output entropy of a binary symmetric channel is bounded in terms of the average entropy of the input projected on a random subset of coordinates. Here, this result is applied for deriving novel lower bounds on the entropy rate of binary hidden Markov processes. For symmetric underlying Markov processes, our bound improves upon the best known bound in the very noisy regime. The nonsymmetric case is also considered, and explicit bounds are derived for Markov processes that satisfy the $(1,infty)$-RLL constraint.
In this study, we generalize a problem of sampling a scalar Gauss Markov Process, namely, the Ornstein-Uhlenbeck (OU) process, where the samples are sent to a remote estimator and the estimator makes a causal estimate of the observed realtime signal. In recent years, the problem is solved for stable OU processes. We present solutions for the optimal sampling policy that exhibits a smaller estimation error for both stable and unstable cases of the OU process along with a special case when the OU process turns to a Wiener process. The obtained optimal sampling policy is a threshold policy. However, the thresholds are different for all three cases. Later, we consider additional noise with the sample when the sampling decision is made beforehand. The estimator utilizes noisy samples to make an estimate of the current signal value. The mean-square error (mse) is changed from previous due to noise and the additional term in the mse is solved which provides performance upper bound and room for a pursuing further investigation on this problem to find an optimal sampling strategy that minimizes the estimation error when the observed samples are noisy. Numerical results show performance degradation caused by the additive noise.
87 - Yong Fang , Jechang Jeong 2021
Distributed arithmetic coding (DAC) has been shown to be effective for Slepian-Wolf coding, especially for short data blocks. In this letter, we propose to use the DAC to compress momery-correlated sources. More specifically, the correlation between sources is modeled as a hidden Markov process. Experimental results show that the performance is close to the theoretical Slepian-Wolf limit.
We derive two sufficient conditions for a function of a Markov random field (MRF) on a given graph to be a MRF on the same graph. The first condition is information-theoretic and parallels a recent information-theoretic characterization of lumpabilit y of Markov chains. The second condition, which is easier to check, is based on the potential functions of the corresponding Gibbs field. We illustrate our sufficient conditions at the hand of several examples and discuss implications for practical applications of MRFs. As a side result, we give a partial characterization of functions of MRFs that are information-preserving.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا