ﻻ يوجد ملخص باللغة العربية
According to Hudsons theorem, any pure quantum state with a positive Wigner function is necessarily a Gaussian state. Here, we make a step towards the extension of this theorem to mixed quantum states by finding upper and lower bounds on the degree of non-Gaussianity of states with positive Wigner functions. The bounds are expressed in the form of parametric functions relating the degree of non-Gaussianity of a state, its purity, and the purity of the Gaussian state characterized by the same covariance matrix. Although our bounds are not tight, they permit us to visualize the set of states with positive Wigner functions.
Valiant-Vazirani showed in 1985 [VV85] that solving NP with the promise that yes instances have only one witness is powerful enough to solve the entire NP class (under randomized reductions). We are interested in extending this result to the quantu
We present a general formalism based on the variational principle for finding the time-optimal quantum evolution of mixed states governed by a master equation, when the Hamiltonian and the Lindblad operators are subject to certain constraints. The pr
Applications of quantum technology often require fidelities to quantify performance. These provide a fundamental yardstick for the comparison of two quantum states. While this is straightforward in the case of pure states, it is much more subtle for
We introduce a new functional to estimate the producibility of mixed quantum states. When applicable, this functional outperforms the quantum Fisher information, and can be operatively exploited to characterize quantum states and phases by multiparti
Any quantum process is represented by a sequence of quantum channels. We consider ergodic processes, obtained by sampling channel valued random variables along the trajectories of an ergodic dynamical system. Examples of such processes include the ef