ﻻ يوجد ملخص باللغة العربية
We present a quantum repeater protocol that generates the elementary segments of entangled photons through the communication of qubus in coherent states. The input photons at the repeater stations can be in arbitrary states to save the local state preparation time for the operations. The flexibility of the scheme accelerates the generation of the elementary segments (close to the exact Bell states) to a high rate for practical quantum communications. The entanglement connection to long distances is simplified and sped up, possibly realizing an entangled pair of high quality within the time in the order of that for classical communication between two far-away locations.
We demonstrate the deterministic generation of multipartite entanglement based on scalable methods. Four qubits are encoded in $^{40}$Ca$^+$, stored in a micro-structured segmented Paul trap. These qubits are sequentially entangled by laser-driven pa
This paper has been withdrawn by the authors, due a oversimplified decoherence model. It will be substituted by a new work.
We report the observation of entanglement between a single trapped atom and a single photon at remote locations. The degree of coherence of the entangled atom-photon pair is verified via appropriate local correlation measurements, after communicating
Most quantum system with short-ranged interactions show a fast decay of entanglement with the distance. In this Letter, we focus on the peculiarity of some systems to distribute entanglement between distant parties. Even in realistic models, like the
We report the first experimental realization of entanglement swapping over large distances in optical fibers. Two photons separated by more than two km of optical fibers are entangled, although they never directly interacted. We use two pairs of time