ﻻ يوجد ملخص باللغة العربية
A well-known Petersons theorem says that the number of abelian ideals in a Borel subalgebra of a rank-$r$ finite dimensional simple Lie algebra is exactly $2^r$. In this paper, we determine the dimensional distribution of abelian ideals in a Borel subalgebra of finite dimensional simple Lie algebras, which is a refinement of the Petersons theorem capturing more Lie algebra invariants.
The aim of this paper is to study the representation theory of quantum Schubert cells. Let $g$ be a simple complex Lie algebra. To each element $w$ of the Weyl group $W$ of $g$, De Concini, Kac and Procesi have attached a subalgebra $U_q[w]$ of the q
Together with Koenig and Ovsienko, the first author showed that every quasi-hereditary algebra can be obtained as the (left or right) dual of a directed bocs. In this monograph, we prove that if one additionally assumes that the bocs is basic, a noti
We develop a direct method to recover an orthoalgebra from its poset of Boolean subalgebras. For this a new notion of direction is introduced. Directions are also used to characterize in purely order-theoretic terms those posets that are isomorphic t
Let $H$ be a character Hopf algebra. Every right coideal subalgebra that contains the coradical has a PBW-basis which can be extended up to a PBW-basis of $H.$
Fix a poset $Q$ on ${x_1,ldots,x_n}$. A $Q$-Borel monomial ideal $I subseteq mathbb{K}[x_1,ldots,x_n]$ is a monomial ideal whose monomials are closed under the Borel-like moves induced by $Q$. A monomial ideal $I$ is a principal $Q$-Borel ideal, deno