ﻻ يوجد ملخص باللغة العربية
Low-scale gaugino mediation predicts that gauginos are significantly heavier than scalar superpartners. In order of increasing mass the lightest superpartners are the gravitino, right-handed sleptons and left-handed sleptons (no light neutralino!). This implies that squark decay chains pass through one or more sleptons and typical final states from squark and gluino production at the LHC include multiple leptons. In addition, left-handed staus have large branching fractions into right-handed staus and the Higgs. As an example, we compute the spectrum of low-scale deconstructed gaugino mediation. In this model gauginos acquire masses at tree level at 5 TeV while scalar masses are generated radiatively from the gaugino masses.
We study low-scale gauge mediated supersymmetry breaking models with a very light gravitino of mass $mathcal{O}(1)$ eV. The cosmological upper bound on the gravitino mass and the collider constraints on the sparticle masses give a significant impact
We consider a scenario where the supersymmetry breaking and its mediation, and the cancellation of the theta parameter of SU(3)c are all caused by a single chiral multiplet. The string axion multiplet is a natural candidate of such a single superfiel
Based on a number of features from proton-proton collisions taken during Run 1 data taking period at the LHC, a boson with a mass around the Electro-Weak scale was postulated such that a significant fraction of its decays would comprise the Standard
Little Higgs models with T-parity can easily satisfy electroweak precision tests and at the same time give a stable particle which is a candidate for cold dark matter. In addition to little Higgs heavy gauge bosons, this type of models predicts a set
We perform a threshold resummation calculation for the associated production of gluinos and gauginos at the LHC to the next-to-leading logarithmic accuracy. Analytical results are presented for the process-dependent soft anomalous dimension and the h