ﻻ يوجد ملخص باللغة العربية
We calculate the shear viscosity $eta = eta_{emu}+eta_{n}$ in a neutron star core composed of nucleons, electrons and muons ($eta_{emu}$ being the electron-muon viscosity, mediated by collisions of electrons and muons with charged particles, and $eta_{n}$ the neutron viscosity, mediated by neutron-neutron and neutron-proton collisions). Deriving $eta_{emu}$, we take into account the Landau damping in collisions of electrons and muons with charged particles via the exchange of transverse plasmons. It lowers $eta_{emu}$ and leads to the non-standard temperature behavior $eta_{emu}propto T^{-5/3}$. The viscosity $eta_{n}$ is calculated taking into account that in-medium effects modify nucleon effective masses in dense matter. Both viscosities, $eta_{emu}$ and $eta_{n}$, can be important, and both are calculated including the effects of proton superfluidity. They are presented in the form valid for any equation of state of nucleon dense matter. We analyze the density and temperature dependence of $eta$ for different equations of state in neutron star cores, and compare $eta$ with the bulk viscosity in the core and with the shear viscosity in the crust.
We calculate the electron shear viscosity (determined by Coulomb electron collisions) for a dense matter in a wide range of parameters typical for white dwarf cores and neutron star crusts. In the density range from ~10^3 g cm^-3 to 10^7-10^10 g cm^-
It is well-known that r-mode oscillations of rotating neutron stars may be unstable with respect to the gravitational wave emission. It is highly unlikely to observe a neutron star with the parameters within the instability window, a domain where thi
The bulk viscosity of the neutron star matter due to the direct Urca processes involving nucleons, electrons and muons is studied taking into account possible superfluidity of nucleons in the neutron star cores. The cases of singlet-state pairing or
The study of long-term evolution of neutron star (NS) magnetic fields is key to understanding the rich diversity of NS observations, and to unifying their nature despite the different emission mechanisms and observed properties. Such studies in princ
Shear viscosity $eta$ is calculated for the nuclear matter described as a system of interacting nucleons with the van der Waals (VDW) equation of state. The Boltzmann-Vlasov kinetic equation is solved in terms of the plane waves of the collective ove