ترغب بنشر مسار تعليمي؟ اضغط هنا

De Morgans law and the theory of fields

257   0   0.0 ( 0 )
 نشر من قبل Peter Johnstone
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We show that the classifying topos for the theory of fields does not satisfy De Morgans law, and we identify its largest dense De Morgan subtopos as the classifying topos for the theory of fields of nonzero characteristic which are algebraic over their prime fields.



قيم البحث

اقرأ أيضاً

201 - Masanao Ozawa 2020
In quantum logic, introduced by Birkhoff and von Neumann, De Morgans Laws play an important role in the projection-valued truth value assignment of observational propositions in quantum mechanics. Takeutis quantum set theory extends this assignment t o all the set-theoretical statements on the universe of quantum sets. However, Takeutis quantum set theory has a problem in that De Morgans Laws do not hold between universal and existential bounded quantifiers. Here, we solve this problem by introducing a new truth value assignment for bounded quantifiers that satisfies De Morgans Laws. To justify the new assignment, we prove the Transfer Principle, showing that this assignment of a truth value to every bounded ZFC theorem has a lower bound determined by the commutator, a projection-valued degree of commutativity, of constants in the formula. We study the most general class of truth value assignments and obtain necessary and sufficient conditions for them to satisfy the Transfer Principle, to satisfy De Morgans Laws, and to satisfy both. For the class of assignments with polynomially definable logical operations, we determine exactly 36 assignments that satisfy the Transfer Principle and exactly 6 assignments that satisfy both the Transfer Principle and De Morgans Laws.
49 - Masanao Ozawa 2020
In 1981, Takeuti introduced set theory based on quantum logic by constructing a model analogous to Boolean-valued models for Boolean logic. He defined the quantum logical truth value for every sentence of set theory. He showed that equality axioms do not hold, while axioms of ZFC set theory hold if appropriately modified with the notion of commutators. Here, we consider the problem in Takeutis quantum set theory that De Morgans laws do not hold for bounded quantifiers. We construct a counter-example to De Morgans laws for bounded quantifiers in Takeutis quantum set theory. We redefine the truth value for the membership relation and bounded existential quantification to ensure that De Morgans laws hold. Then, we show that the truth value of every theorem of ZFC set theory is lower bounded by the commutator of constants therein as quantum transfer principle.
95 - Michael Shulman 2017
This is an introduction to type theory, synthetic topology, and homotopy type theory from a category-theoretic and topological point of view, written as a chapter for the book New Spaces for Mathematics and Physics (ed. Gabriel Catren and Mathieu Anel).
We propose foundations for a synthetic theory of $(infty,1)$-categories within homotopy type theory. We axiomatize a directed interval type, then define higher simplices from it and use them to probe the internal categorical structures of arbitrary t ypes. We define Segal types, in which binary composites exist uniquely up to homotopy; this automatically ensures composition is coherently associative and unital at all dimensions. We define Rezk types, in which the categorical isomorphisms are additionally equivalent to the type-theoretic identities - a local univalence condition. And we define covariant fibrations, which are type families varying functorially over a Segal type, and prove a dependent Yoneda lemma that can be viewed as a directed form of the usual elimination rule for identity types. We conclude by studying homotopically correct adjunctions between Segal types, and showing that for a functor between Rezk types to have an adjoint is a mere proposition. To make the bookkeeping in such proofs manageable, we use a three-layered type theory with shapes, whose contexts are extended by polytopes within directed cubes, which can be abstracted over using extension types that generalize the path-types of cubical type theory. In an appendix, we describe the motivating semantics in the Reedy model structure on bisimplicial sets, in which our Segal and Rezk types correspond to Segal spaces and complete Segal spaces.
We make some beginning observations about the category $mathbb{E}mathrm{q}$ of equivalence relations on the set of natural numbers, where a morphism between two equivalence relations $R,S$ is a mapping from the set of $R$-equivalence classes to that of $S$-equivalence classes, which is induced by a computable function. We also consider some full subcategories of $mathbb{E}mathrm{q}$, such as the category $mathbb{E}mathrm{q}(Sigma^0_1)$ of computably enumerable equivalence relations (called ceers), the category $mathbb{E}mathrm{q}(Pi^0_1)$ of co-computably enumerable equivalence relations, and the category $mathbb{E}mathrm{q}(mathrm{Dark}^*)$ whose objects are the so-called dark ceers plus the ceers with finitely many equivalence classes. Although in all these categories the monomorphisms coincide with the injective morphisms, we show that in $mathbb{E}mathrm{q}(Sigma^0_1)$ the epimorphisms coincide with the onto morphisms, but in $mathbb{E}mathrm{q}(Pi^0_1)$ there are epimorphisms that are not onto. Moreover, $mathbb{E}mathrm{q}$, $mathbb{E}mathrm{q}(Sigma^0_1)$, and $mathbb{E}mathrm{q}(mathrm{Dark}^*)$ are closed under finite products, binary coproducts, and coequalizers, but we give an example of two morphisms in $mathbb{E}mathrm{q}(Pi^0_1)$ whose coequalizer in $mathbb{E}mathrm{q}$ is not an object of $mathbb{E}mathrm{q}(Pi^0_1)$.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا