ترغب بنشر مسار تعليمي؟ اضغط هنا

Convective dust clouds in a complex plasma

126   0   0.0 ( 0 )
 نشر من قبل Markus H. Thoma
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The plasma is generated in a low frequency glow discharge within an elongated glass tube oriented vertically. The dust particles added to the plasma are confined above the heater and form counter-rotating clouds close to the tube centre. The shape of the clouds and the velocity field of the conveying dust particles are determined. The forces acting on the particles are calculated. It is shown that convection of the dust is affected by the convective gas motion which is triggered, in turn, by thermal creep of the gas along the inhomogeneously heated walls of the tube.



قيم البحث

اقرأ أيضاً

We report on the observation of the self-excited dust density waves in the dc discharge complex plasma. The experiments were performed under microgravity conditions in the Plasmakristall-4 facility on board the International Space Station. In the exp eriment, the microparticle cloud was first trapped in an inductively coupled plasma, then released to drift for some seconds in a dc discharge with constant current. After that the discharge polarity was reversed. DC plasma containing a drifting microparticle cloud was found to be strongly non-uniform in terms of microparticle drift velocity and plasma emission in accord with [Zobnin et.al., Phys. Plasmas 25, 033702 (2018)]. In addition to that, non-uniformity in the self-excited wave pattern was observed: In the front edge of the microparticle cloud (defined as head), the waves had larger phase velocity than in the rear edge (defined as tail). Also, after the polarity reversal, the wave pattern exhibited several bifurcations: Between each of the two old wave crests, a new wave crest has formed. These bifurcations, however, occurred only in the head of the microparticle cloud. We show that spatial variations of electric field inside the drifting cloud play an important role in the formation of the wave pattern. Comparison of the theoretical estimations and measurements demonstrate the significant impact of the electric field on the phase velocity of the wave. The same theoretical approach applied to the instability growth rate, showed agreement between estimated and measured values.
Oscillation of particles in a dust crystal formed in a low-pressure radio-frequency gas discharge under microgravity conditions is studied. Analysis of experimental data obtained in our previous study shows that the oscillations are highly isotropic and nearly homogeneous in the bulk of a dust crystal; oscillations of the neighboring particles are significantly correlated. We demonstrate that the standard deviation of the particle radius-vector along with the local particle number density fully define the coupling parameter of the particle subsystem. The latter proves to be of the order of 100, which is two orders of magnitude lower than the coupling parameter estimated for the Brownian diffusion of particles with the gas temperature. This means significant kinetic overheating of particles under stationary conditions. A theoretical interpretation of the large amplitude of oscillation implies the increase of particle charge fluctuations in the dust crystal. The theoretical estimates are based on the ionization equation of state for the complex plasma and the equation for the plasma perturbation evolution. They are shown to match the results of experimental data processing. Estimated order of magnitude of the coupling parameter accounts for the existence of the solid-liquid phase transition observed for similar systems in experiments.
Heat transport in a three-dimensional complex (dusty) plasma was experimentally studied in microgravity conditions using Plasmakristall-4 (PK-4) instrument on board the International Space Station (ISS). An extended suspension of microparticles was l ocally heated by a shear flow created by applying the radiation pressure force of the manipulation-laser beam. Individual particle trajectories in the flow were analysed and from these, using a fluid heat transport equation that takes viscous heating and neutral gas drag into account, the complex plasmas thermal diffusivity and kinematic viscosity were calculated. Their values are compared with previous results reported in ground-based experiments with complex plasmas.
We investigate the low-frequency wave mode associated with heavy particles and its instability in a collisional complex plasma with drifting ions. The effect of the ion drift on the sound velocity of this mode is discussed. The general condition of t he instability is derived for subthermal ion drifts, taking into account strong coupling of the particle component. As a general tendency, strong coupling effects reduce the sound velocity and facilitate the occurrence of the ion drift instability. A wide parameter range is considered from the weakly collisional to strongly collisional regimes for the ion and particle components. The chosen plasma parameters are representative to the PK-4 experiment, currently operational on board the International Space Station.
Experiments to explore stability conditions and topology of a dense microparticle cloud supported against gravity by a gas flow were carried out. By using a nozzle shaped glass insert within the glass tube of a dc discharge plasma chamber a weakly io nized gas flow through a de Laval nozzle was produced. The experiments were performed using neon gas at a pressure of 100 Pa and melamine-formaldehyde particles with a diameter of 3.43 {mu}m. The capturing and stable global confining of the particles behind the nozzle in the plasma were demonstrated. The particles inside the cloud behaved as a single convection cell inhomogeneously structured along the nozzle axis in a tube-like manner. The pulsed acceleration localized in the very head of the cloud mediated by collective plasma-particle interactions and the resulting wave pattern were studied in detail.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا