ﻻ يوجد ملخص باللغة العربية
We study the dynamics of a phantom scalar field dark energy interacting with dark matter in loop quantum cosmology (LQC). Two kinds of coupling of the form $alpha{rho_m}{dotphi}$ (case I) and $3beta H (rho_phi +rho_m)$ (case II) between the phantom energy and dark matter are examined with the potential for the phantom field taken to be exponential. For both kinds of interactions, we find that the future singularity appearing in the standard FRW cosmology can be avoided by loop quantum gravity effects. In case II, if the phantom field is initially rolling down the potential, the loop quantum effect has no influence on the cosmic late time evolution and the universe will accelerate forever with a constant energy ratio between the dark energy and dark matter.
We investigate the background dynamics when dark energy is coupled to dark matter in the universe described by Einstein cosmology and Loop Quantum Cosmology. We introduce a new general form of dark sector coupling, which presents us a more complicate
The present work deals with the dynamical system investigation of interacting dark energy models (quintessence and phantom) in the framework of Loop Quantum Cosmology by taking into account a broad class of self-interacting scalar field potentials. T
In this paper, we study the dynamics of k-essence in loop quantum cosmology (LQC). The study indicates that the loop quantum gravity (LQG) effect plays a key role only in the early epoch of the universe and is diluted at the later stage. The fixed po
We analyse the emergent cosmological dynamics corresponding to the mean field hydrodynamics of quantum gravity condensates, in the tensorial group field theory formalism. We focus in particular on the cosmological effects of fundamental interactions,
We describe non-flat standard Friedmann cosmology of canonical scalar field with barotropic fluid in form of non-linear Schr{o}dinger-type (NLS) formulation in which all cosmological dynamical quantities are expressed in term of Schr{o}dinger quant