ترغب بنشر مسار تعليمي؟ اضغط هنا

A Semi-Analytic Model for the Co-evolution of Galaxies, Black Holes, and Active Galactic Nuclei

77   0   0.0 ( 0 )
 نشر من قبل Rachel Somerville
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a new semi-analytic model that self-consistently traces the growth of supermassive black holes (BH) and their host galaxies within the context of the LCDM cosmological framework. In our model, the energy emitted by accreting black holes regulates the growth of the black holes themselves, drives galactic scale winds that can remove cold gas from galaxies, and produces powerful jets that heat the hot gas atmospheres surrounding groups and clusters. We present a comprehensive comparison of our model predictions with observational measurements of key physical properties of low-redshift galaxies, such as cold gas fractions, stellar metallicities and ages, and specific star formation rates. We find that our new models successfully reproduce the exponential cutoff in the stellar mass function and the stellar and cold gas mass densities at z~0, and predict that star formation should be largely, but not entirely, quenched in massive galaxies at the present day. We also find that our model of self-regulated BH growth naturally reproduces the observed relation between BH mass and bulge mass. We explore the global formation history of galaxies in our models, presenting predictions for the cosmic histories of star formation, stellar mass assembly, cold gas, and metals. We find that models assuming the concordance LCDM cosmology overproduce star formation and stellar mass at high redshift (z>2). A model with less small-scale power predicts less star formation at high redshift, and excellent agreement with the observed stellar mass assembly history, but may have difficulty accounting for the cold gas in quasar absorption systems at high redshift (z~3-4).



قيم البحث

اقرأ أيضاً

Supermassive black holes (SMBHs) have been found to be ubiquitous in the nuclei of early-type galaxies and of bulges of spirals. There are evidences of a tight correlation between the SMBH masses, the velocity dispersions of stars in the spheroidal c omponents galaxies and other galaxy properties. Also the evolution of the luminosity density due to nuclear activity is similar to that due to star formation. All that suggests an evolutionary connection between Active Galactic Nuclei (AGNs) and their host galaxies. After a review of these evidences this lecture discusses how AGNs can affect the host galaxies. Other feedback processes advocated to account for the differences between the halo and the stellar mass functions are also briefly introduced.
78 - Fabio Fontanot 2020
We present a new implementation of the GAlaxy Evolution and Assembly (GAEA) semi-analytic model, that features an improved modelling of the process of cold gas accretion onto supermassive black hole (SMBHs), derived from both analytic arguments and h igh-resolution simulations. We consider different scenarios for the loss of angular momentum required for the available cold gas to be accreted onto the central SMBHs, and we compare different combinations of triggering mechanisms, including galaxy mergers and disc instabilities in star forming discs. We compare our predictions with the luminosity function (LF) observed for Active Galactic Nuclei (AGN) and we confirm that a non-instantaneous accretion timescale (either in the form of a low-angular momentum reservoir or as an assumed light curve evolution) is needed in order to reproduce the measured evolution of the AGN-LF and the so-called AGN-downsizing trend. Moreover, we also study the impact of AGN feedback, in the form of AGN-driven outflows, on the SF properties of model galaxies, using prescriptions derived both from empirical studies or from numerical experiments. We show that AGN-driven outflows are effective in suppressing the residual star formation rate in massive galaxies ($> 10^{11} M_odot$) without changing their overall assembly history. These winds also affect the SFR of lower mass galaxies, resulting in a too large fraction of passive galaxies at $< 10^{10} M_odot$. Finally, we study the Eddington ratio distribution as a function of SMBH mass, showing that only objects more massive than $10^8 M_odot$ are already in a self-regulated state as inferred from observations.
84 - Qing Yang , Bin Hu , Xiao-Dong Li 2018
We study the co-evolution of supermassive black holes (SMBHs) with galaxies by means of semi-analytic model (SAM) of galaxy formation based on sub-halo merger trees built from Millennium and Millennium-II simulation. We utilize the simulation results from Guo 2013 and Henriques 2015 to study two aspects of the co-evolution, emph{i.e.} the stochastic gravitational wave (GW) background generated by SMBH merger and the SMBH/galaxy clustering. The characteristic strain amplitude of GW background predicted by Guo 2013 and Henriques 2015 models are $A_{yr^{-1}}=5.00times10^{-16}$ and $A_{yr^{-1}}=9.42times10^{-17}$, respectively. We find the GW amplitude is very sensitive to the galaxy merger rate. The difference in the galaxy merger rate between Guo 2013 and Henriques 2015, results in a factor $5$ deviation in the GW strain amplitude. For clusterings, we calculate the spatially isotropic two point auto- and cross-correlation functions (2PCFs) for both SMBHs and galaxies by using the mock catalogs generated from Guo 2013 model. We find that all 2PCFs have positive dependence on both SMBH and galaxy mass. And there exist a significant time evolution in 2PCFs, namely, the clustering effect is enhanced at lower redshifts. Interestingly, this result is not reported in the active galactic nuclei samples in SDSS. Our analysis also shows that, roughly, SMBHs and galaxies, with galaxy mass $10^2sim10^3$ larger than SMBH mass, have similar pattern of clustering, which is a reflection of the co-evolution of SMBH and galaxy. Finally, we calculate the first ten multiples of the angular power spectrum of the energy density of GW background. We find the amplitude of angular power spectrum of the first ten multiples is about $10%$ to $60%$ of the monopole component in the whole frequency range.
In our recent paper (Salucci et al. 1998) we have investigated the mass distribution function of massive dark objects in galaxies, exploiting the available optical and radio observations. Under the assumption that massive black holes power active gal actic nuclei, we have compared the mass functions of massive dark objects and black holes responsible for the observed activity. We have found that a scenario with a single short burst per active galactic nucleus is in a good agreement with the available data. Here we summarize and discuss the main points of our study.
[Abridged] We present a comprehensive investigation of the cosmological evolution of the luminosity function (LF) of galaxies and active galactic nuclei (AGN) in the infrared (IR). Based on the observed dichotomy in the ages of stellar populations of early-type galaxies on one side and late-type galaxies on the other, the model interprets the epoch-dependent LFs at z geq 1.5 using a physical model for the evolution of proto-spheroidal galaxies and of the associated AGNs, while IR galaxies at z<1.5 are interpreted as being mostly late-type cold (normal) and warm (starburst) galaxies. As for proto-spheroids, in addition to the epoch-dependent LFs of stellar and AGN components separately, we have worked out the evolving LFs of these objects as a whole (stellar plus AGN component). The model provides a physical explanation for the observed positive evolution of both galaxies and AGNs up to z simeq 2.5 and for the negative evolution at higher redshifts, for the sharp transition from Euclidean to extremely steep counts at (sub-)mm wavelengths, as well as the (sub-)mm counts of strongly lensed galaxies, that are hard to account for by alternative, physical or phenomenological, approaches. The evolution of late-type galaxies and of z<1.5 AGNs is described using a parametric phenomenological approach. The modeled AGN contributions to the counts and to the cosmic infrared background (CIB) are always subdominant with maximal at mid-IR wavelengths. The model provides a good fit to the multi-wavelength (from the mid-IR to millimeter waves) data on LFs at different redshifts and on number counts (both global and per redshift slices). A prediction of the present model is a systematic variation with wavelength of the populations dominating the counts and the contributions to the CIB intensity. The implied specific trend for cross-wavelength CIB power spectra is found to be in good agreement with the data.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا