ترغب بنشر مسار تعليمي؟ اضغط هنا

High-Redshift Galaxy Kinematics: Constraints on Models of Disk Formation

118   0   0.0 ( 0 )
 نشر من قبل Brant Robertson
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Integral field spectroscopy of galaxies at redshift z~2 has revealed a population of early-forming, rotationally-supported disks. These high-redshift systems provide a potentially important clue to the formation processes that build disk galaxies in the universe. A particularly well-studied example is the z=2.38 galaxy BzK-15504, which was shown by Genzel et al. (2006) to be a rotationally supported disk despite the fact that its high star formation rate and short gas consumption timescale require a very rapid acquisition of mass. Previous kinematical analyses have suggested that z~2 disk galaxies like BzK-15504 did not form through mergers because their line-of-sight velocity fields display low levels of asymmetry. We perform the same kinematical analysis on a set of simulated disk galaxies formed in gas-rich mergers of the type that may be common at high redshift, and show that the remnant disks display low velocity field asymmetry and satisfy the criteria that have been used to classify high-redshift galaxies as disks observationally. Further, we compare one of our remnants to the bulk properties of BzK-15504 and show that it has a star formation rate, gas surface density, and a circular velocity-to-velocity dispersion ratio that matches BzK-15504 remarkably well. We suggest that observations of high-redshift disk galaxies like BzK-15504 are consistent with the hypothesis that gas-rich mergers play an important role in disk formation at high redshift.



قيم البحث

اقرأ أيضاً

Galaxy surveys aim to map the large-scale structure of the Universe and use redshift space distortions to constrain deviations from general relativity and probe the existence of massive neutrinos. However, the amount of information that can be extrac ted is limited by the accuracy of theoretical models used to analyze the data. Here, by using the L-Galaxies semi-analytical model run over the MXXL N-body simulation, we assess the impact of galaxy formation on satellite kinematics and the theoretical modelling of redshift-space distortions. We show that different galaxy selection criteria lead to noticeable differences in the radial distributions and velocity structure of satellite galaxies. Specifically, whereas samples of stellar mass selected galaxies feature satellites that roughly follow the dark matter, emission line satellite galaxies are located preferentially in the outskirts of halos and display net infall velocities. We demonstrate that capturing these differences is crucial for modelling the multipoles of the correlation function in redshift space, even on large scales. In particular, we show how modelling small scale velocities with a single Gaussian distribution leads to a poor description of the measure clustering. In contrast, we propose a parametrization that is flexible enough to model the satellite kinematics, and that leads to and accurate description of the correlation function down to sub-Mpc scales. We anticipate that our model will be a necessary ingredient in improved theoretical descriptions of redshift space distortions, which together could result in significantly tighter cosmological constraints and a more optimal exploitation of future large datasets.
We present Lya luminosity function (LF), clustering measurements, and Lya line profiles based on the largest sample, to date, of 207 Lya emitters (LAEs) at z=6.6 on the 1-deg^2 sky of Subaru/XMM-Newton Deep Survey (SXDS) field. Our z=6.6 Lya LF inclu ding cosmic variance estimates yields the best-fit Schechter parameters of phi*=8.5 +3.0/-2.2 x10^(-4) Mpc^(-3) and L*(Lya)=4.4 +/-0.6 x10^42 erg s^(-1) with a fixed alpha=-1.5, and indicates a decrease from z=5.7 at the >~90% confidence level. However, this decrease is not large, only =~30% in Lya luminosity, which is too small to be identified in the previous studies. A clustering signal of z=6.6 LAEs is detected for the first time. We obtain the correlation length of r_0=2-5 h^(-1) Mpc and bias of b=3-6, and find no significant boost of clustering amplitude by reionization at z=6.6. The average hosting dark halo mass inferred from clustering is 10^10-10^11 Mo, and duty cycle of LAE population is roughly ~1% albeit with large uncertainties. The average of our high-quality Keck/DEIMOS spectra shows an FWHM velocity width of 251 +/-16 km s^(-1). We find no large evolution of Lya line profile from z=5.7 to 6.6, and no anti-correlation between Lya luminosity and line width at z=6.6. The combination of various reionization models and our observational results about the LF, clustering, and line profile indicates that there would exist a small decrease of IGMs Lya transmission owing to reionization, but that the hydrogen IGM is not highly neutral at z=6.6. Our neutral-hydrogen fraction constraint implies that the major reionization process took place at z>~7.
105 - N. Menci 2008
We compare the results from a semi-analytic model of galaxy formation with spectro-photometric observations of distant galaxy clusters observed in the range 0.8< z< 1.3. We investigate the properties of their red sequence (RS) galaxies and compare th em with those of the field at the same redshift. In our model we find that i) a well-defined, narrow RS is obtained already by z= 1.2; this is found to be more populated than the field RS, analogously to what observed and predicted at z=0; ii) the predicted U-V rest-frame colors and scatter of the cluster RS at z=1.2 have average values of 1 and 0.15 respectively, with a cluster-to-cluster variance of 0.2 and 0.06, respectively. The scatter of the RS of cluster galaxies is around 5 times smaller than the corresponding field value; iii) when the RS galaxies are considered, the mass growth histories of field and cluster galaxies at z=1.2 are similar, with 90 % of the stellar mass of RS galaxies at z=1.2 already formed at cosmic times t=2.5 Gyr, and 50 % at t=1 Gyr; v) the predicted distribution of stellar ages of RS galaxies at z=1.2 peaks at 3.7 Gyr for both cluster and field populations; however, for the latter the distribution is significantly skewed toward lower ages. When compared with observations, the above findings show an overall consistency, although the average value 0.07 of the observed cluster RS scatter (U-V colors) at z=1.2 is smaller than the corresponding model central value. We discuss the physical origin and the significance of the above results in the framework of cosmological galaxy formation.
We compare the star-formation history and dynamics of the Milky Way (MW) with the properties of distant disk galaxies. During the first ~4 Gyr of its evolution, the MW formed stars with a high star-formation intensity (SFI), Sigma_SFR~0.6 Msun/yr/kpc 2 and as a result, generated outflows and high turbulence in its interstellar medium. This intense phase of star formation corresponds to the formation of the thick disk. The formation of the thick disk is a crucial phase which enables the MW to have formed approximately half of its total stellar mass by z~1 which is similar to MW progenitor galaxies selected by abundance matching. This agreement suggests that the formation of the thick disk may be a generic evolutionary phase in disk galaxies. Using a simple energy injection-kinetic energy relationship between the 1-D velocity dispersion and SFI, we can reproduce the average perpendicular dispersion in stellar velocities of the MW with age. This relationship, its inferred evolution, and required efficiency are consistent with observations of galaxies from z~0-3. The high turbulence generated by intense star formation naturally resulted in a thick disk, a chemically well-mixed ISM, and is the mechanism that links the evolution of MW to the observed characteristics of distant disk galaxies.
The annihilation of cosmic positrons ($e^+$) with electrons in the interstellar medium (ISM) results in the strongest persistent gamma-ray line signal in the sky. For 50 years, this 511 keV emission has puzzled observers and theoreticians. A key issu e for understanding $e^+$-astrophysics is found in cosmic-ray propagation, especially at low kinetic energies (< 10 MeV). We want to shed light on how $e^+$s propagate and the resulting morphology of the emission. We approach this positron puzzle by inferring kinematic information of the 511 keV line in the inner radian of the Galaxy. This constrains propagation scenarios and source populations. By dissecting the 511 keV emission as measured with INTEGRAL/SPI, we derive spectra for individual regions in the sky. The centroid energies are converted into Doppler-shifts, representing the line-of-sight velocity along different longitudes. This results in a longitude-velocity diagram of $e^+$-annihilation. We also determine Doppler-broadenings to study annihilation conditions as they vary across the Galaxy. We find line-of-sight velocities in the 511 keV line that are consistent with zero, as well as with galactic rotation from CO measurements, and measurements of radioactive Al-26. The velocity gradient in the inner 60 deg is determined to be $4pm6$ km/s/deg. The 511 keV line width is constant as a function of longitude at $2.43pm0.14$ keV. The positronium fraction is found to be 1.0 along the galactic plane. The weak signals in the disk leave open the question whether $e^+$-annihilation is associated with the high velocities seen in Al-26 or rather with ordinarily rotating components of the Galaxys ISM. We confirm previous results that $e^+$s are slowed down to the 10 eV energy scale before annihilation, and constrain bulk Doppler-broadening contributions to <1.25 keV. Consequently, the true annihilation conditions remain unclear.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا