ﻻ يوجد ملخص باللغة العربية
We discuss the physics of embolic stroke using a minimal model of emboli moving through the cerebral arteries. Our model of the blood flow network consists of a bifurcating tree, into which we introduce particles (emboli) that halt flow on reaching a node of similar size. Flow is weighted away from blocked arteries, inducing an effective interaction between emboli. We justify the form of the flow weighting using a steady flow (Poiseuille) analysis and a more complicated nonlinear analysis. We discuss free flowing and heavily congested limits and examine the transition from free flow to congestion using numerics. The correlation time is found to increase significantly at a critical value, and a finite size scaling is carried out. An order parameter for non-equilibrium critical behavior is identified as the overlap of blockages flow shadows. Our work shows embolic stroke to be a feature of the cerebral blood flow network on the verge of a phase transition.
We have investigated the formation of helium droplets in two physical situations. In the first one, droplets are atomised from superfluid or normal liquid by a fast helium vapour flow. In the second, droplets of normal liquid are formed inside porous
We investigate universal features of the jamming transition in granular materials, colloids and glasses. We show that the jamming transition in these systems has common features: slowing of response to external perturbation, and the onset of structural heterogeneities.
Statistical physics has proven to be a very fruitful framework to describe phenomena outside the realm of traditional physics. The last years have witnessed the attempt by physicists to study collective phenomena emerging from the interactions of ind
Identifying protein-protein interactions is crucial for a systems-level understanding of the cell. Recently, algorithms based on inverse statistical physics, e.g. Direct Coupling Analysis (DCA), have allowed to use evolutionarily related sequences to
We present a unified formulation for quantum statistical physics based on the representation of the density matrix as a functional integral. We identify the stochastic variable of the effective statistical theory that we derive as a boundary configur