ترغب بنشر مسار تعليمي؟ اضغط هنا

Fitness Landscape Analysis for Dynamic Resource Allocation in Multiuser OFDM Based Cognitive Radio Systems

268   0   0.0 ( 0 )
 نشر من قبل Dong Huang
 تاريخ النشر 2010
  مجال البحث الهندسة المعلوماتية
والبحث باللغة English




اسأل ChatGPT حول البحث

This paper has been withdrawn.



قيم البحث

اقرأ أيضاً

Cognitive radios hold tremendous promise for increasing the spectral efficiency of wireless communication systems. In this paper, an adaptive bit allocation algorithm is presented for orthogonal frequency division multiplexing (OFDM) CR systems opera ting in a frequency selective fading environment. The algorithm maximizes the CR system throughput in the presence of narrowband interference, while guaranteeing a BER below a predefined threshold. The effect of imperfect channel estimation on the algorithms performance is also studied.
We integrate a wireless powered communication network with a cooperative cognitive radio network, where multiple secondary users (SUs) powered wirelessly by a hybrid access point (HAP) help a primary user relay the data. As a reward for the cooperati on, the secondary network gains the spectrum access where SUs transmit to HAP using time division multiple access. To maximize the sum-throughput of SUs, we present a secondary sum-throughput optimal resource allocation (STORA) scheme. Under the constraint of meeting target primary rate, the STORA scheme chooses the optimal set of relaying SUs and jointly performs the time and energy allocation for SUs. Specifically, by exploiting the structure of the optimal solution, we find the order in which SUs are prioritized to relay primary data. Since the STORA scheme focuses on the sum-throughput, it becomes inconsiderate towards individual SU throughput, resulting in low fairness. To enhance fairness, we investigate three resource allocation schemes, which are (i) equal time allocation, (ii) minimum throughput maximization, and (iii) proportional time allocation. Simulation results reveal the trade-off between sum-throughput and fairness. The minimum throughput maximization scheme is the fairest one as each SU gets the same throughput, but yields the least SU sum-throughput.
A new form of multiuser diversity, named emph{multiuser interference diversity}, is investigated for opportunistic communications in cognitive radio (CR) networks by exploiting the mutual interference between the CR and the existing primary radio (PR ) links. The multiuser diversity gain and ergodic throughput are analyzed for different types of CR networks and compared against those in the conventional networks without the PR link.
Impulse-Radio (IR) is a wideband modulation technique that can support multiple users by employing random Time-Hopping (TH) combined with repeated transmissions. The latter is aimed at alleviating the impact of collisions. This work employs a graphic al model for describing the multiuser system which, in turn, facilitates the inclusion of general coding schemes. Based on factor graph representation of the system, several iterative multiuser detectors are presented. These detectors are applicable for any binary linear coding scheme. The performance of the proposed multiuser detectors is evaluated via simulations revealing large gains with low complexity.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا