ﻻ يوجد ملخص باللغة العربية
The paper is organized as a self-contained literate Haskell program that implements elements of an executable finite set theory with focus on combinatorial generation and arithmetic encodings. The code, tested under GHC 6.6.1, is available at http://logic.csci.unt.edu/tarau/research/2008/fSET.zip . We introduce ranking and unranking functions generalizing Ackermanns encoding to the universe of Hereditarily Finite Sets with Urelements. Then we build a lazy enumerator for Hereditarily Finite Sets with Urelements that matches the unranking function provided by the inverse of Ackermanns encoding and we describe functors between them resulting in arithmetic encodings for powersets, hypergraphs, ordinals and choice functions. After implementing a digraph representation of Hereditarily Finite Sets we define {em decoration functions} that can recover well-founded sets from encodings of their associated acyclic digraphs. We conclude with an encoding of arbitrary digraphs and discuss a concept of duality induced by the set membership relation. Keywords: hereditarily finite sets, ranking and unranking functions, executable set theory, arithmetic encodings, Haskell data representations, functional programming and computational mathematics
In many computer vision classification tasks, class priors at test time often differ from priors on the training set. In the case of such prior shift, classifiers must be adapted correspondingly to maintain close to optimal performance. This paper an
Prologs ability to return multiple answers on backtracking provides an elegant mechanism to derive reversible encodings of combinatorial objects as Natural Numbers i.e. {em ranking} and {em unranking} functions. Starting from a generalization of Acke
It is our view that the state of the art in constructing a large collection of graph algorithms in terms of linear algebraic operations is mature enough to support the emergence of a standard set of primitive building blocks. This paper is a position
GlobalBioIm is an open-source MATLAB library for solving inverse problems. The library capitalizes on the strong commonalities between forward models to standardize the resolution of a wide range of imaging inverse problems. Endowed with an operator-
We construct a symmetric invertible binary pairing function $F(m,n)$ on the set of positive integers with a property of $F(m,n)=F(n,m)$. Then we provide a complete proof of its symmetry and bijectivity, from which the construction of symmetric invert