ﻻ يوجد ملخص باللغة العربية
In this paper we introduce a new linear filtering technique, the so-called matrix filters, that maximizes the signal-to-interference ratio of compact sources of unknown intensity embedded in a set of images by taking into account the cross-correlations between the different channels. By construction, the new filtering technique outperforms (or at least equals) the standard matched filter applied on individual images. An immediate application is the detection of extragalactic point sources in Cosmic Microwave Background images obtained at different wavelengths. We test the new technique in two simulated cases: a simple two-channel case with ideal correlated color noise and more realistic simulations of the sky as it will be observed by the LFI instrument of the upcoming ESAs Planck mission. In both cases we observe an improvement with respect to the standard matched filter in terms of signal-to-noise interference, number of detections and number of false alarms.
We discuss the potential of a next generation space-borne CMB experiment for studies of extragalactic sources with reference to COrE+, a project submitted to ESA in response to the M4 call. We consider three possible options for the telescope size: 1
We discuss the potential of a next generation space-borne Cosmic Microwave Background (CMB) experiment for studies of extragalactic sources. Our analysis has particular bearing on the definition of the future space project, CORE, that has been submit
We aim to present a tutorial on the detection, parameter estimation and statistical analysis of compact sources (far galaxies, galaxy clusters and Galactic dense emission regions) in cosmic microwave background observations. The topic is of great rel
This paper considers filters (the Mexican hat wavelet, the matched and the scale-adaptive filters) that optimize the detection/separation of point sources on a background. We make a one-dimensional treatment, we assume that the sources have a Gaussia
We present the design and performance of broadband and tunable infrared-blocking filters for millimeter and sub-millimeter astronomy composed of small scattering particles embedded in an aerogel substrate. The ultra-low-density (typically < 150 mg/cm