ﻻ يوجد ملخص باللغة العربية
Finding the largest clique is a notoriously hard problem, even on random graphs. It is known that the clique number of a random graph G(n,1/2) is almost surely either k or k+1, where k = 2log n - 2log(log n) - 1. However, a simple greedy algorithm finds a clique of size only (1+o(1))log n, with high probability, and finding larger cliques -- that of size even (1+ epsilon)log n -- in randomized polynomial time has been a long-standing open problem. In this paper, we study the following generalization: given a random graph G(n,1/2), find the largest subgraph with edge density at least (1-delta). We show that a simple modification of the greedy algorithm finds a subset of 2log n vertices whose induced subgraph has edge density at least 0.951, with high probability. To complement this, we show that almost surely there is no subset of 2.784log n vertices whose induced subgraph has edge density 0.951 or more.
Problems of the following kind have been the focus of much recent research in the realm of parameterized complexity: Given an input graph (digraph) on $n$ vertices and a positive integer parameter $k$, find if there exist $k$ edges (arcs) whose delet
In the Survivable Network Design Problem (SNDP), the input is an edge-weighted (di)graph $G$ and an integer $r_{uv}$ for every pair of vertices $u,vin V(G)$. The objective is to construct a subgraph $H$ of minimum weight which contains $r_{uv}$ edge-
Understanding spatial correlation is vital in many fields including epidemiology and social science. Lee, Meeks and Pettersson (Stat. Comput. 2021) recently demonstrated that improved inference for areal unit count data can be achieved by carrying ou
We investigate the parameterized complexity of finding subgraphs with hereditary properties on graphs belonging to a hereditary graph class. Given a graph $G$, a non-trivial hereditary property $Pi$ and an integer parameter $k$, the general problem $
Kuhn, Osthus and Taraz showed that for each gamma>0 there exists C such that any n-vertex graph with minimum degree gamma n contains a planar subgraph with at least 2n-C edges. We find the optimum value of C for all gamma<1/2 and sufficiently large n.