ﻻ يوجد ملخص باللغة العربية
A layer of sand of thickness h flows down a rough surface if the inclination is larger than some threshold value theta which decreases with h. A tentative microscopic model for the dependence of theta with h is proposed for rigid frictional grains, based on the following hypothesis: (i) a horizontal layer of sand has some coordination z larger than a critical value z_c where mechanical stability is lost (ii) as the tilt angle is increased, the configurations visited present a growing proportion $_s of sliding contacts. Instability with respect to flow occurs when z-z_s=z_c. This criterion leads to a prediction for theta(h) in good agreement with empirical observations.
Heavy metal-ferromagnet bilayer structures have attracted great research interest for charge-to-spin interconversion. In this work, we have investigated the effect of the permalloy seed layer on the Ta polycrystalline phase and its spin Hall angle. I
The optical properties of two-dimensional transition metal dichalcogenide monolayers such as MoS$_2$ or WSe$_2$ are dominated by excitons, Coulomb bound electron-hole pairs. Screening effects due the presence of hexagonal-BN surrounding layers have b
The coercive field and angular dependence of the coercive field of single-grain Nd$_{2}$Fe$_{14}$B permanent magnets are computed using finite element micromagnetics. It is shown that the thickness of surface defects plays a critical role in determin
We present the results of atomic-force-microscopy-based friction measurements on Re-doped molybdenum disulfide (MoS2). In stark contrast to the seemingly universal observation of decreasing friction with increasing number of layers on two-dimensional
Using Monte Carlo simulations and finite-size scaling analysis, the critical behavior of attractive rigid rods of length k (k-mers) on square lattices at intermediate density has been studied. A nematic phase, characterized by a big domain of paralle