ﻻ يوجد ملخص باللغة العربية
We derive an energy-dependent decay-time distribution function from the multi-exponential decay of the ensemble photoluminescence (PL) of InGaN/GaN quantum dots (QDs), which agrees well with recently published single-QD time-resolved PL measurements. Using eight-band k.p modelling, we show that the built-in piezo- and pyroelectric fields within the QDs cause a sensitive dependence of the radiative lifetimes on the exact QD geometry and composition. Moreover, the radiative lifetimes also depend heavily on the composition of the direct surrounding of the QDs. A broad lifetime distribution occurs even for moderate variations of the QD structure. Thus, for unscreened fields a multi-exponential decay of the ensemble PL is generally expected in this material system.
High resolution coherent nonlinear optical spectroscopy of an ensemble of red-emitting InGaN quantum dots in GaN nanowires is reported. The data show a pronounced atom-like interaction between resonant laser fields and quantum dot excitons at low tem
The optical emission of InGaN quantum dots embedded in GaN nanowires is dynamically controlled by a surface acoustic wave (SAW). The emission energy of both the exciton and biexciton lines is modulated over a 1.5 meV range at ~330 MHz. A small but sy
We present an eight-band k.p model for the calculation of the electronic structure of wurtzite semiconductor quantum dots (QDs) and its application to indium gallium nitride (InGaN) QDs formed by composition fluctuations in InGaN layers. The eight-ba
We investigate the origin of the fast recombination dynamics of bound and free excitons in GaN nanowire ensembles by temperature-dependent photoluminescence spectroscopy using both continuous-wave and pulsed excitation. The exciton recombination in t
Cathodoluminescence measurements on single InGaN/GaN quantum dots (QDs) are reported. Complex spectra with up to five emission lines per QD are observed. The lines are polarized along the orthogonal crystal directions [1 1 -2 0] and [-1 1 0 0]. Reali