ترغب بنشر مسار تعليمي؟ اضغط هنا

The crystalline electric field as a probe for long range antiferromagnetic order and superconductivity in CeFeAsO$_{1-x}$F$_x$

162   0   0.0 ( 0 )
 نشر من قبل Songxue Chi
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We use inelastic neutron scattering to study the crystalline electric field (CEF) excitations of Ce$^{3+}$ in CeFeAsO$_{1-x}$F$_{x}$($x=0,0.16$). For nonsuperconducting CeFeAsO, the Ce CEF levels have three magnetic doublets in the paramagnetic state, but these doublets split into six singlets when Fe ions order antiferromagnetically. For superconducting CeFeAsO$_{0.84}$F$_{0.16}$ ($T_c=41$ K), where the static AF order is suppressed, the Ce CEF levels have three magnetic doublets at $hbaromega=0,18.7,58.4$ meV at all temperatures. Careful measurements of the intrinsic linewidth $Gamma$ and the peak position of the 18.7 meV mode reveal clear anomaly at $T_c$, consistent with a strong enhancement of local magnetic susceptibility $chi^{primeprime}(hbaromega)$ below $T_c$. These results suggest that CEF excitations in the rare-earth oxypnictides can be used as a probe of spin dynamics in the nearby FeAs planes.



قيم البحث

اقرأ أيضاً

123 - T. Shang , L. Jiao , J. Dai 2012
The electrical resistance of CeFeAsO$_{1-x}$F$_x$ (x = 0.06 and 0.08) has been measured in a magnetic field up to 40T. At zero field, the sample with x = 0.06 shows a structural phase transition around T$_S$~100K, followed by a spin-density-wave (SDW ) transition around T$_{SDW}$~30K. For x = 0.08, the structural phase transition is suppressed down to T$_S$~60K without a clear anomaly associated with the Fe-SDW transition, and superconductivity shows up at T$_C$~25K. At lower temperatures, both samples show a clear resistive peak around T$_N$~4K, which is associated with the antiferromagnetic (AFM) transition of Ce-4f electrons. Strikingly, zero resistance is recovered upon further lowering temperature below T$_N$ for x = 0.08. Moreover, we found that the AFM transition of Ce 4f-electrons at 4K hardly changes with applying a magnetic field up to 40T, even in the case of x = 0.08, where superconductivity has been partially suppressed at such a large field.
519 - Q. Huang , Jun Zhao , J. W. Lynn 2008
We use neutron scattering to study the structural distortion and antiferromagnetic (AFM) order in LaFeAsO$_{1-x}$F$_{x}$ as the system is doped with fluorine (F) to induce superconductivity. In the undoped state, LaFeAsO exhibits a structural distort ion, changing the symmetry from tetragonal (space group $P4/nmm$) to orthorhombic (space group $Cmma$) at 155 K, and then followed by an AFM order at 137 K. Doping the system with F gradually decreases the structural distortion temperature, but suppresses the long range AFM order before the emergence of superconductivity. Therefore, while superconductivity in these Fe oxypnictides can survive in either the tetragonal or the orthorhombic crystal structure, it competes directly with static AFM order.
194 - S. C. Zhao , D. Hou , Y. Wu 2008
Raman spectra have been measured on iron-based quaternary CeO$_{1-x}$F$_x$FeAs and LaO$_{1-x}$F$_x$FeAs with varying fluorine doping at room temperatures. A group analysis has been made to clarify the optical modes. Based on the first principle calcu lations, the observed phonon modes can be assigned accordingly. In LaO$_{1-x}$F$_x$FeAs, the E$_g$ and A$_{1g}$ modes related to the vibrations of La, are suppressed with increasing F doping. However F doping only has a small effect on the E$_g$ and A$_{1g}$ modes of Fe and As. The Raman modes of La and As are absent in rare-earth substituted CeO$_{1-x}$F$_x$FeAs, and the E$_g$ mode of oxygen, corresponding to the in-plane vibration of oxygen, moves to around 450 cm$^{-1}$ and shows a very sharp peak. Electronic scattering background is low and electron-phonon coupling is not evident for the observed phonon modes. Three features are found above 500 cm$^{-1}$, which may be associated with multi-phonon process. Nevertheless it is also possible that they are related to magnetic fluctuations or interband transitions of d orbitals considering their energies.
71 - C.R. Rotundu , K. Ingersent , 2006
Resistivity measurements were performed on Pr$_{1-x}$La$_x$Os$_4$Sb$_{12}$ single crystals at temperatures down to 20 mK and in fields up to 18 T. The results for dilute-Pr samples ($x=0.3$ and 0.67) are consistent with model calculations performed a ssuming a singlet crystalline-electric-field (CEF) ground state. The residual resistivity of these crystals features a smeared step centered around 9 T, the predicted crossing field for the lowest CEF levels. The CEF contribution to the magnetoresistance has a weaker-than-calculated dependence on the field direction, suggesting that interactions omitted from the CEF model lead to avoided crossing in the effective levels of the Pr$^{3+}$ ion. The dome-shaped magnetoresistance observed for $x = 0$ and 0.05 cannot be reproduced by the CEF model, and likely results from fluctuations in the field-induced antiferroquadrupolar phase.
148 - A. Sapkota , Y. Li , B. L. Winn 2020
We present a neutron scattering study of phonons in single crystals of (Pb$_{0.5}$Sn$_{0.5}$)$_{1-x}$In$_x$Te with $x=0$ (metallic, but nonsuperconducting) and $x=0.2$ (nonmetallic normal state, but superconducting). We map the phonon dispersions (mo re completely for $x=0$) and find general consistency with theoretical calculations, except for the transverse and longitudinal optical (TO and LO) modes at the Brillouin zone center. At low temperature, both modes are strongly damped but sit at a finite energy ($sim4$ meV in both samples), shifting to higher energy at room temperature. These modes are soft due to a proximate structural instability driven by the sensitivity of Pb-Te and Sn-Te $p$-orbital hybridization to off-center displacements of the metal atoms. The impact of the soft optical modes on the low-energy acoustic modes is inferred from the low thermal conductivity, especially at low temperature. Given that the strongest electron-phonon coupling is predicted for the LO mode, which should be similar for both studied compositions, it is intriguing that only the In-doped crystal is superconducting. In addition, we observe elastic diffuse (Huang) scattering that is qualitatively explained by the difference in Pb-Te and Sn-Te bond lengths within the lattice of randomly distributed Pb and Sn sites. We also confirm the presence of anomalous diffuse low-energy atomic vibrations that we speculatively attribute to local fluctuations of individual Pb atoms between off-center sites.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا