ﻻ يوجد ملخص باللغة العربية
Random matrix theory is used to represent generic loss of coherence of a fixed central system coupled to a quantum-chaotic environment, represented by a random matrix ensemble, via random interactions. We study the average density matrix arising from the ensemble induced, in contrast to previous studies where the average values of purity, concurrence, and entropy were considered; we further discuss when one or the other approach is relevant. The two approaches agree in the limit of large environments. Analytic results for the average density matrix and its purity are presented in linear response approximation. The two-qubit system is analysed, mainly numerically, in more detail.
This paper describes the dynamics of a quantum two-level system (qubit) under the influence of an environment modeled by an ensemble of random matrices. In distinction to earlier work, we consider here separable couplings and focus on a regime where
Complex extension of quantum mechanics and the discovery of pseudo-unitarily invariant random matrix theory has set the stage for a number of applications of these concepts in physics. We briefly review the basic ideas and present applications to pro
The purpose of this review article is to present some of the latest developments using random techniques, and in particular, random matrix techniques in quantum information theory. Our review is a blend of a rather exhaustive review, combined with mo
It is commonly thought that a state-dependent quantity, after being averaged over a classical ensemble of random Hamiltonians, will always become independent of the state. We point out that this is in general incorrect: if the ensemble of Hamiltonian
We give a generalization of the random matrix ensembles, including all lassical ensembles. Then we derive the joint density function of the generalized ensemble by one simple formula, which give a direct and unified way to compute the density functio