ﻻ يوجد ملخص باللغة العربية
We study various box-size scaling techniques to obtain the multifractal properties, in terms of the singularity spectrum f(alpha), of the critical eigenstates at the metal-insulator transition within the 3-D Anderson model of localisation. The typical and ensemble averaged scaling laws of the generalised inverse participation ratios are considered. In pursuit of a numerical optimisation of the box-scaling technique we discuss different box-partitioning schemes including cubic and non-cubic boxes, use of periodic boundary conditions to enlarge the system and single and multiple origins for the partitioning grid are also implemented. We show that the numerically most reliable method is to divide a system of linear size L equally into cubic boxes of size l for which L/l is an integer. This method is the least numerically expensive while having a good reliability.
We describe a new multifractal finite size scaling (MFSS) procedure and its application to the Anderson localization-delocalization transition. MFSS permits the simultaneous estimation of the critical parameters and the multifractal exponents. Simula
We use multifractal finite-size scaling to perform a high-precision numerical study of the critical properties of the Anderson localization-delocalization transition in the unitary symmetry class, considering the Anderson model including a random mag
Many real-world complex systems have small-world topology characterized by the high clustering of nodes and short path lengths.It is well-known that higher clustering drives localization while shorter path length supports delocalization of the eigenv
Using the results of large scale numerical simulations we study the probability distribution of the pseudo critical temperature for the three-dimensional Edwards-Anderson Ising spin glass and for the fully connected Sherrington-Kirkpatrick model. We
We have investigated the phase transition in the Heisenberg spin glass using massive numerical simulations to study larger sizes, 48x48x48, than have been attempted before at a spin glass phase transition. A finite-size scaling analysis indicates tha