ترغب بنشر مسار تعليمي؟ اضغط هنا

Searching for the secondary eclipse of CoRoT-Exo-2b and its transit timing variations

154   0   0.0 ( 0 )
 نشر من قبل Roi Alonso
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

With more than 80 transits observed in the CoRoT light curve with a cadence of 32 s, CoRoT-Exo-2b provides an excellent case to search for the secondary eclipse of the planet, with an expected signal of less than 10^-4 in relative flux. The activity of the star causes a modulation on the flux that makes the detection of this signal challenging. We describe the technique used to seek for the secondary eclipse, that leads to a tentative 2.5 sigma detection of a 5.5x10^-5 eclipse. If the effect of the spots are not taken into account, the times of transit centers will also be affected. They could lead to an erroneous detection of periodic transit timing variations of ~20 s and with a 7.45 d period. By measuring the transit central times at different depths of the transit (transit bisectors), we show that there are no such periodic variations in the CoRoT-Exo-2b O-C residuals larger than ~10 s.



قيم البحث

اقرأ أيضاً

228 - R. Alonso , H.J. Deeg , P. Kabath 2010
We present the results of a ground-based search for the secondary eclipse of the 3.3 Mjup transiting planet CoRoT-2b. We performed near infrared photometry using the LIRIS instrument on the 4.2 m William Herschel Telescope, in the H and K_s filters. We monitored the star around two expected secondary eclipses in two nights under very good observing conditions. For the depth of the secondary eclipse we find in H-band a 3 sigma upper limit of 0.17%, whereas we detected a tentative eclipse with a depth of 0.16+-0.09% in the K_s-band. These depths can be translated into brightness temperatures of T_H<2250 K and T_{K_s} = 1890(+260-350) K, which indicate an inefficient re-distribution of the incident stellar flux from the planets dayside to its nightside. Our results are in agreement with the CoRoT optical measurement (Alonso et al. 09) and with Spitzer 4.5 and 8 micron results (Gillon et al. 09c).
The eclipsing white dwarf plus main-sequence binary NN Serpentis provides one of the most convincing cases for the existence of circumbinary planets around evolved binaries. The exquisite timing precision provided by the deep eclipse of the white dwa rf has revealed complex variations in the eclipse arrival times over the last few decades. These variations have been interpreted as the influence of two planets in orbit around the binary. Recent studies have proved that such a system is dynamically stable over the current lifetime of the binary. However, the existence of such planets is by no means proven and several alternative mechanisms have been proposed that could drive similar variations. One of these is apsidal precession, which causes the eclipse times of eccentric binaries to vary sinusoidally on many year timescales. In this paper we present timing data for the secondary eclipse of NN Ser and show that they follow the same trend seen in the primary eclipse times, ruling out apsidal precession as a possible cause for the variations. This result leaves no alternatives to the planetary interpretation for the observed period variations, although we still do not consider their existence as proven. Our data limits the eccentricity of NN Ser to e<0.001. We also detect a 3.3+/-1.0 second delay in the arrival times of the secondary eclipses relative to the best planetary model. This delay is consistent with the expected 2.84+/-0.04 second Romer delay of the binary, and is the first time this effect has been detected in a white dwarf plus M dwarf system.
199 - F. Bouchy , D. Queloz , M. Deleuil 2008
We report on the spectroscopic transit of the massive hot-Jupiter CoRoT-Exo-2b observed with the high-precision spectrographs SOPHIE and HARPS. By modeling the radial velocity anomaly occurring during the transit due to the Rossiter-McLaughlin (RM) e ffect, we determine the sky-projected angle between the stellar spin and the planetary orbital axis to be close to zero lambda=7.2+-4.5 deg, and we secure the planetary nature of CoRoT-Exo-2b. We discuss the influence of the stellar activity on the RM modeling. Spectral analysis of the parent star from HARPS spectra are presented.
The transiting planet CoRoT-1b is thought to belong to the pM-class of planets, in which the thermal emission dominates in the optical wavelengths. We present a detection of its secondary eclipse in the CoRoT white channel data, whose response functi on goes from ~400 to ~1000 nm. We used two different filtering approaches, and several methods to evaluate the significance of a detection of the secondary eclipse. We detect a secondary eclipse centered within 20 min at the expected times for a circular orbit, with a depth of 0.016+/-0.006%. The center of the eclipse is translated in a 1-sigma upper limit to the planets eccentricity of ecosomega<0.014. Under the assumption of a zero Bond Albedo and blackbody emission from the planet, it corresponds to a T_{CoRoT}=2330 +120-140 K. We provide the equilibrium temperatures of the planet as a function of the amount of reflected light. If the planet is in thermal equilibrium with the incident flux from the star, our results imply an inefficient transport mechanism of the flux from the day to the night sides.
151 - Marie Hrudkova 2008
Searching for transit timing variations in the known transiting exoplanet systems can reveal the presence of other bodies in the system. Here we report such searches for two transiting exoplanet systems, TrES-1 and WASP-2. Their new transits were obs erved with the 4.2m William Herschel Telescope located on La Palma, Spain. In a continuing programme, three consecutive transits were observed for TrES-1, and one for WASP-2 during September 2007. We used the Markov Chain Monte Carlo simulations to derive transit times and their uncertainties. The resulting transit times are consistent with the most recent ephemerides and no conclusive proof of additional bodies in either system was found.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا