ﻻ يوجد ملخص باللغة العربية
The success of adiabatic quantum computation (AQC) depends crucially on the ability to maintain the quantum computer in the ground state of the evolution Hamiltonian. The computation process has to be sufficiently slow as restricted by the minimal energy gap. However, at finite temperatures, it might need to be fast enough to avoid thermal excitations. The question is, how fast does it need to be? The structure of evolution Hamiltonians for AQC is generally too complicated for answering this question. Here we model an adiabatic quantum computer as a (parametrically driven) harmonic oscillator. The advantages of this model are (1) it offers high flexibility for quantitative analysis on the thermal effect, (2) the results qualitatively agree with previous numerical calculation, and (3) it could be experimentally verified with quantum electronic circuits.
We propose a simple feedback-control scheme for adiabatic quantum computation with superconducting flux qubits. The proposed method makes use of existing on-chip hardware to monitor the ground-state curvature, which is then used to control the comput
Quantum computers with Kerr-nonlinear parametric oscillators (KPOs) have recently been proposed by the author and others. Quantum computation using KPOs is based on quantum adiabatic bifurcations of the KPOs, which lead to quantum superpositions of c
Blind quantum computation (BQC) is a new type of quantum computation model. BQC allows a client (Alice) who does not have enough sophisticated technology and knowledge to perform universal quantum computation and resorts a remote quantum computation
Adiabatic quantum computation (AQC), which is particularly useful for combinatorial optimization, becomes more powerful by using excited states, instead of ground states. However, the excited-state AQC is prone to errors due to dissipation. Here we p
Since quantum computers are known to break the vast majority of currently-used cryptographic protocols, a variety of new protocols are being developed that are conjectured, but not proven to be safe against quantum attacks. Among the most promising i