ترغب بنشر مسار تعليمي؟ اضغط هنا

Information filtering based on transferring similarity

116   0   0.0 ( 0 )
 نشر من قبل Tao Zhou
 تاريخ النشر 2009
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In this Brief Report, we propose a new index of user similarity, namely the transferring similarity, which involves all high-order similarities between users. Accordingly, we design a modified collaborative filtering algorithm, which provides remarkably higher accurate predictions than the standard collaborative filtering. More interestingly, we find that the algorithmic performance will approach its optimal value when the parameter, contained in the definition of transferring similarity, gets close to its critical value, before which the series expansion of transferring similarity is convergent and after which it is divergent. Our study is complementary to the one reported in [E. A. Leicht, P. Holme, and M. E. J. Newman, Phys. Rev. E {bf 73} 026120 (2006)], and is relevant to the missing link prediction problem.



قيم البحث

اقرأ أيضاً

104 - Jie Ren , Tao Zhou , 2008
Recommender systems are significant to help people deal with the world of information explosion and overload. In this Letter, we develop a general framework named self-consistent refinement and implement it be embedding two representative recommendat ion algorithms: similarity-based and spectrum-based methods. Numerical simulations on a benchmark data set demonstrate that the present method converges fast and can provide quite better performance than the standard methods.
In this paper, we propose a novel method to compute the similarity between congeneric nodes in bipartite networks. Different from the standard Person correlation, we take into account the influence of nodes degree. Substituting this new definition of similarity for the standard Person correlation, we propose a modified collaborative filtering (MCF). Based on a benchmark database, we demonstrate the great improvement of algorithmic accuracy for both user-based MCF and object-based MCF.
Heat conduction process has recently found its application in personalized recommendation [T. Zhou emph{et al.}, PNAS 107, 4511 (2010)], which is of high diversity but low accuracy. By decreasing the temperatures of small-degree objects, we present a n improved algorithm, called biased heat conduction (BHC), which could simultaneously enhance the accuracy and diversity. Extensive experimental analyses demonstrate that the accuracy on MovieLens, Netflix and Delicious datasets could be improved by 43.5%, 55.4% and 19.2% compared with the standard heat conduction algorithm, and the diversity is also increased or approximately unchanged. Further statistical analyses suggest that the present algorithm could simultaneously identify users mainstream and special tastes, resulting in better performance than the standard heat conduction algorithm. This work provides a creditable way for highly efficient information filtering.
Keywords in scientific articles have found their significance in information filtering and classification. In this article, we empirically investigated statistical characteristics and evolutionary properties of keywords in a very famous journal, name ly Proceedings of the National Academy of Science of the United States of America (PNAS), including frequency distribution, temporal scaling behavior, and decay factor. The empirical results indicate that the keyword frequency in PNAS approximately follows a Zipfs law with exponent 0.86. In addition, there is a power-low correlation between the cumulative number of distinct keywords and the cumulative number of keyword occurrences. Extensive empirical analysis on some other journals data is also presented, with decaying trends of most popular keywords being monitored. Interestingly, top journals from various subjects share very similar decaying tendency, while the journals of low impact factors exhibit completely different behavior. Those empirical characters may shed some light on the in-depth understanding of semantic evolutionary behaviors. In addition, the analysis of keyword-based system is helpful for the design of corresponding recommender systems.
103 - Gang Yan , Zhong-Qian Fu , Jie Ren 2006
Much recent empirical evidence shows that textit{community structure} is ubiquitous in the real-world networks. In this Letter, we propose a growth model to create scale-free networks with the tunable strength (noted by $Q$) of community structure an d investigate the influence of community strength upon the collective synchronization induced by SIRS epidemiological process. Global and local synchronizability of the system is studied by means of an order parameter and the relevant finite-size scaling analysis is provided. The numerical results show that, a phase transition occurs at $Q_csimeq0.835$ from global synchronization to desynchronization and the local synchronization is weakened in a range of intermediately large $Q$. Moreover, we study the impact of mean degree $<k>$ upon synchronization on scale-free networks.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا