ﻻ يوجد ملخص باللغة العربية
We investigate the implications of the intergalactic opacity for the evolution of the cosmic UV luminosity density and its sources. Our main constraint is our measurement of the Lya forest opacity at redshifts 2<z<4.2 from 86 high-resolution quasar spectra. In addition, we impose the requirements that HI must be reionized by z=6 and HeII by z~3, and consider estimates of the hardness of the ionizing background from HI to HeII column density ratios. The derived hydrogen photoionization rate is remarkably flat over the Lya forest redshift range covered. Because the quasar luminosity function is strongly peaked near z~2, the lack of redshift evolution indicates that star-forming galaxies likely dominate the photoionization rate at z>~3. Combined with direct measurements of the galaxy UV luminosity function, this requires only a small fraction f_esc~0.5% of galactic hydrogen ionizing photons to escape their source for galaxies to solely account for the entire ionizing background. Under the assumption that the galactic UV emissivity traces the star formation rate, current state-of-the-art observational estimates of the star formation rate density appear to underestimate the total photoionization rate at z~4 by a factor ~4, are in tension with recent determinations of the UV luminosity function, and fail to reionize the Universe by z~6 if extrapolated to arbitrarily high redshift. A theoretical star formation history peaking earlier fits the Lya forest photoionization rate well, reionizes the Universe in time, and is in better agreement with the rate of z~4 gamma-ray bursts observed by Swift. Quasars suffice to doubly ionize helium by z~3 and likely contribute a non-negligible and perhaps dominant fraction of the hydrogen ionizing background at their z~2 peak. [Abridged]
We study the observed cosmic ionizing background as a constraint on the nature of the sources responsible for the reionization of the Universe. In earlier work, we showed that extrapolations of the Ultra-Violet Luminosity Function (LF) of Lyman Break
Based on results by recent surveys, the number of bright quasars at redshifts z>3 is being constantly revised upwards. Current consensus is that at bright magnitudes ($M_{1450}le -27$) the number densities of such sources could have been underestimat
We investigate the host galaxy and environment properties of a sample of 400 low z (<0.5) quasars that were imaged in the SDSS Stripe82. We can detect and study the properties of the host galaxy for more than 75% of the data sample. We discover that
We present new measurements of CIB anisotropies using Planck. Combining HFI data with IRAS, the angular auto- and cross frequency power spectrum is measured from 143 to 3000 GHz, and the auto-bispectrum from 217 to 545 GHz. The total areas used to co
We present a mark correlation analysis of the galaxies in the Sloan Digital Sky Survey using weights provided by MOPED. The large size of the sample permits statistically significant statements about how galaxies with different metallicities and star