ﻻ يوجد ملخص باللغة العربية
We prove that the complex-valued modified Benjamin-Ono (mBO) equation is locally wellposed if the initial data $phi$ belongs to $H^s$ for $sgeq 1/2$ with $ orm{phi}_{L^2}$ sufficiently small without performing a gauge transformation. Hence the real-valued mBO equation is globally wellposed for those initial datas, which is contained in the results of C. Kenig and H. Takaoka cite{KenigT} where the smallness condition is not needed. We also prove that the real-valued $H^infty$ solutions to mBO equation satisfy a priori local in time $H^s$ bounds in terms of the $H^s$ size of the initial data for $s>1/4$.
We prove that the Cauchy problem for the dispersion generalized Benjamin-Ono equation [partial_t u+|partial_x|^{1+alpha}partial_x u+uu_x=0, u(x,0)=u_0(x),] is locally well-posed in the Sobolev spaces $H^s$ for $s>1-alpha$ if $0leq alpha leq 1$. The n
We prove the discontinuity for the weak $ L^2(T) $-topology of the flow-map associated with the periodic Benjamin-Ono equation. This ensures that this equation is ill-posed in $ H^s(T) $ as soon as $ s<0 $ and thus completes exactly the well-posedness result obtained by the author.
Considering the Cauchy problem for the modified finite-depth-fluid equation $partial_tu-G_delta(partial_x^2u)mp u^2u_x=0, u(0)=u_0$, where $G_delta f=-i ft ^{-1}[coth(2pi delta xi)-frac{1}{2pi delta xi}]ft f$, $deltages 1$, and $u$ is a real-valued f
In this paper we show global well-posedness near vacuum for the binary-ternary Boltzmann equation. The binary-ternary Boltzmann equation provides a correction term to the classical Boltzmann equation, taking into account both binary and ternary inter
The Benjamin Ono equation with a slowly varying potential is $$ text{(pBO)} qquad u_t + (Hu_x-Vu + tfrac12 u^2)_x=0 $$ with $V(x)=W(hx)$, $0< h ll 1$, and $Win C_c^infty(mathbb{R})$, and $H$ denotes the Hilbert transform. The soliton profile is $$Q_{