ترغب بنشر مسار تعليمي؟ اضغط هنا

Stellar population gradients in early-type cluster galaxies with VIMOS IFU

183   0   0.0 ( 0 )
 نشر من قبل Tim Rawle
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present results from a pilot study of radial stellar population trends in early-type galaxies using the VLT VIMOS integral field unit (IFU). We observe twelve galaxies in the cluster Abell 3389 (z~0.027). For each galaxy, we measure 22 line-strength indices in multiple radial bins out to at least the effective radius. We derive stellar population parameters using a grid inversion technique, and calculate the radial gradients in age, metallcity and alpha-abundance. Generally, the galaxies in our sample have flat radial trends in age and [alpha/Fe], but negative gradients in [Z/H] (-0.20 +/- 0.05 dex). Combining our targets with two similar, long-slit studies to increase sample size, we find that the gradients are not correlated with the central velocity dispersion or K-band luminosity (both proxies for galaxy mass). However, we find that the age and metallicity gradients are both anti-correlated with their respective central values (to > 4 sigma), such that galaxies with young cores have steeper positive age gradients, and those with metal-rich centres have strong negative [Z/H] gradients.



قيم البحث

اقرأ أيضاً

We present the stellar population and velocity dispersion gradients for a sample of 24 brightest cluster galaxies (BCGs) in the nearby Universe for which we have obtained high quality long-slit spectra at the Gemini telescopes. With the aim of studyi ng the possible connection between the formation of the BCGs and their host clusters, we explore the relations between the stellar population gradients and properties of the host clusters as well as the possible connections between the stellar population gradients and other properties of the galaxies. We find mean stellar population gradients (negative {Delta}[Z/H]/log r gradient of -0.285{pm}0.064; small positive {Delta}log (age)/log r gradient of 0.069{pm}0.049; and null {Delta}[E/Fe]/log r gradient of -0.008{pm}0.032) that are consistent with those of normal massive elliptical galaxies. However, we find a trend between metallicity gradients and velocity dispersion (with a negative slope of -1.616{pm}0.539) that is not found for the most massive ellipticals. Furthermore, we find trends between the metallicity gradients and K-band luminosities (with a slope of 0.173{pm}0.081) as well as the distance from the BCG to the X-ray peak of the host cluster (with a slope of -7.546{pm}2.752). The latter indicates a possible relation between the formation of the cluster and that of the central galaxy.
We study the internal radial gradients of the stellar populations in a sample comprising 522 early-type galaxies (ETGs) from the SAMI (Sydney- AAO Multi-object Integral field spectrograph) Galaxy Survey. We stack the spectra of individual spaxels in radial bins, and derive basic stellar population properties: total metallicity ([Z/H]), [Mg/Fe], [C/Fe] and age. The radial gradient ($ abla$) and central value of the fits (evaluated at R$_e$/4) are compared against a set of six possible drivers of the trends. We find that velocity dispersion ($sigma$) - or, equivalently gravitational potential - is the dominant driver of the chemical composition gradients. Surface mass density is also correlated with the trends, especially with stellar age. The decrease of $ abla$[Mg/Fe] with increasing $sigma$ is contrasted by a rather shallow dependence of $ abla$[Z/H] with $sigma$ (although this radial gradient is overall rather steep). This result, along with a shallow age slope at the massive end, imposes stringent constraints on the progenitors of the populations that contribute to the formation of the outer envelopes of ETGs. The SAMI sample is split between a field sample and a cluster sample. Only weak environment-related differences are found, most notably a stronger dependence of central total metallicity ([Z/H]$_{e4}$) with $sigma$, along with a marginal trend of $ abla$[Z/H] to steepen in cluster galaxies, a result that is not followed by [Mg/Fe]. The results presented here serve as constraints on numerical models of the formation and evolution of ETGs.
We derive ages, metallicities, and individual element abundances of early- and late-type galaxies (ETGs and LTGs) out to 1.5 R$_e$. We study a large sample of 1900 galaxies spanning $8.6 - 11.3 log M/M_{odot}$ in stellar mass, through key absorption features in stacked spectra from the SDSS-IV/MaNGA survey. We use mock galaxy spectra with extended star formation histories to validate our method for LTGs and use corrections to convert the derived ages into luminosity- and mass-weighted quantities. We find flat age and negative metallicity gradients for ETGs and negative age and negative metallicity gradients for LTGs. Age gradients in LTGs steepen with increasing galaxy mass, from $-0.05pm0.11~log$ Gyr/R$_e$ for the lowest mass galaxies to $-0.82pm0.08~log$ Gyr/R$_e$ for the highest mass ones. This strong gradient-mass relation has a slope of $-0.70pm0.18$. Comparing local age and metallicity gradients with the velocity dispersion $sigma$ within galaxies against the global relation with $sigma$ shows that internal processes regulate metallicity in ETGs but not age, and vice versa for LTGs. We further find that metallicity gradients with respect to local $sigma$ show a much stronger dependence on galaxy mass than radial metallicity gradients. Both galaxy types display flat [C/Fe] and [Mg/Fe], and negative [Na/Fe] gradients, whereas only LTGs display gradients in [Ca/Fe] and [Ti/Fe]. ETGs have increasingly steep [Na/Fe] gradients with local $sigma$ reaching $6.50pm0.78$ dex/$log$ km/s for the highest masses. [Na/Fe] ratios are correlated with metallicity for both galaxy types across the entire mass range in our sample, providing support for metallicity dependent supernova yields.
We present stellar population parameters of twelve early-type galaxies (ETGs) in the Coma Cluster based on spectra obtained using the Low Resolution Imaging Spectrograph on the Keck II Telescope. Our data allow us to examine in detail the zero-point and scatter in their stellar population properties. Our ETGs have SSP-equivalent ages of on average 5-8 Gyr with the models used here, with the oldest galaxies having ages of ~10 Gyr old. This average age is identical to the mean age of field ETGs. Our ETGs span a large range in velocity dispersion but are consistent with being drawn from a population with a single age. Specifically, ten of the twelve ETGs are consistent within their formal errors of having the same age, 5.2+/-0.2 Gyr, over a factor of more than 750 in mass. We therefore find no evidence for downsizing of the stellar populations of ETGs in the core of the Coma Cluster. We suggest that Coma Cluster ETGs may have formed the majority of their mass at high redshifts but suffered small but detectable star formation events at z~0.1-0.3. Previous detections of downsizing from stellar populations of local ETGs may not reflect the same downsizing seen in lookback studies of RSGs, as the young ages of the local ETGs represent only a small fraction of their total masses. (abridged)
61 - S. C. Trager 2000
We present single stellar population (SSP) equivalent ages, metallicities, and abundance ratios for local elliptical galaxies derived from Hbeta, Mgb, and <Fe> absorption line strengths. We use an extension of the Worthey (1994) stellar population mo dels that incorporates non-solar line-strength response functions by Tripicco & Bell (1995), allowing us to correct the models for the enhancements of Mg and other alpha-like elements relative to the Fe-peak elements. SSP-equivalent ages of local ellipticals from Gonzalez (1993) are found to vary widely, 1.5 < t < 18 Gyr, while metallicities [Z/H] and enhancement ratios [E/Fe] are strongly peaked around <[Z/H]>=+0.26 and <[E/Fe]>=+0.20 (in an aperture of radius Re/8). The enhancement ratios are milder than previous estimates, owing to the application of non-solar abundance corrections to both Mgb and <Fe> for the first time. Gradients in stellar populations within galaxies are found to be mild, with SSP-equivalent age decreasing by 25%, metallicity decreasing by <[Z/H]>=0.20 dex, and [E/Fe] remaining nearly constant out to an aperture of radius Re/2 for nearly all systems. Our ages have an overall zeropoint uncertainty of at least 25% due to uncertainties in the stellar evolution prescription, the oxygen abundance, the effect of non-solar abundances on the isochrones, and other unknowns. However, the relative age rankings of stellar populations should be largely unaffected by these errors. In particular, the large spread in ages appears to be real and cannot be explained by contamination of Hbeta by blue stragglers or hot horizontal branch stars, or by fill-in of Hbeta by emission. Correlations between these derived SSP-equivalent parameters and other galaxy observables will be discussed in future papers. (Abridged)
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا