ترغب بنشر مسار تعليمي؟ اضغط هنا

The X-ray cavities, filaments and cold fronts in the core of the galaxy group NGC 5044

152   0   0.0 ( 0 )
 نشر من قبل Fabio Gastaldello
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English
 تأليف Fabio Gastaldello




اسأل ChatGPT حول البحث

We present a two-dimensional analysis of the bright nearby galaxy group NGC 5044 using the currently available Chandra and XMM data. In the inner 10 kpc a pair of cavities are evident together with a set of bright X-ray filaments. If the cavities are interpreted as gas displaced by relativistic plasma inflated by an AGN, even in the absence of extended 1.4 GHz emission, this would be consistent with a recent outburst as also indicated by the extent of dust and H_alpha emission. The soft X-ray filaments coincident with H_alpha and dust emission are cooler than the ones which do not correlate with optical and infrared emission. We suggest that dust-aided cooling contributes to form warm (T =10^4 K) gas, emitting H_alpha radiation. At 31 kpc and 67 kpc a pair of cold fronts are present, indicative of sloshing due to a dynamical perturbation caused by accretion of a less massive group, also suggested by the peculiar velocity of the brightest galaxy NGC 5044 with respect to the mean group velocity.



قيم البحث

اقرأ أيضاً

We present the results of a deep Chandra observation of the X-ray bright, moderate cooling flow group NGC 5044 along with the observed correlations between the ionized, atomic, and molecular gas in this system. The Chandra observation shows that the central AGN has undergone two outbursts in the past 100 Myrs, based on the presence of two pairs of nearly bipolar X-ray cavities. The molecular gas and dust within the central 2kpc is aligned with the orientation of the inner pair of bipolar X-ray cavities, suggesting that the most recent AGN outburst had a dynamical impact on the molecular gas. NGC 5044 also hosts many X-ray filaments within the central 8kpc, but there are no obvious connections between the X-ray and H$alpha$ filaments and the more extended X-ray cavities that were inflated during the prior AGN outburst. Using the linewidth of the blended Fe-L line complex as a diagnostic for multiphase gas, we find that the majority of the multiphase, thermally unstable gas in NGC 5044 is confined within the X-ray filaments. While the cooling time and entropy of the gas within the X-ray filaments are very similar, not all filaments show evidence of gas cooling or an association with Ha emission. We suggest that the various observed properties of the X-ray filaments are suggestive of an evolutionary sequence where thermally unstable gas begins to cool, becomes multiphased, develops Ha emitting plasma, and finally produces cold gas.
150 - Mark J. Henriksen 2011
Observations made with the Rossi X-ray Timing Explorer (RXTE) Proportional Counter Array (PCA) to constrain the hard X-ray emission in the NGC 5044 group are reported here. Modeling a combined PCA and ROSAT position sensitive proportional counter (PS PC) spectrum with a 0.5 - 15 keV energy range shows excess hard emission above 4 keV. Addition of a powerlaw component with spectral index of 2.6 - 2.8 and luminosity of 2.6 x10^42 ergs/s within 700 kpc in the observed energy band removes these residuals. Thus, there is a detection of a significant non-thermal component that is 32% of the total X-ray emission. Point source emission makes up at most 14% of the non-thermal emission from the NGC 5044 group. Therefore, the diffuse, point source subtracted, non-thermal component is 2.2 - 3.0x10^42 ergs/s . The cosmic-ray electron energy density is 3.6 x10^[-12] ergs cm-3 and the average magnetic field is 0.034 muGauss in the largest radio emitting region. The ratio of cosmic-ray electron energy density to magnetic field energy density, ~2.5x10^4, is significantly out of equipartition and is therefore atypical of radio lobes. In addition, the groups small size and low non-thermal energy density strongly contradicts the size-energy relationship found for radio lobes. Thus, it is unlikely to the related to the active galaxy and is most likely a relic of the merger. The energy in cosmic-rays and magnetic field is consistent with simulations of cosmic-ray acceleration by merger shocks.
A deep Chandra observation of the X-ray bright group, NGC 5044, shows that the central region of this group has been strongly perturbed by repeated AGN outbursts. These recent AGN outbursts have produced many small X-ray cavities, cool filaments and cold fronts. We find a correlation between the coolest X-ray emitting gas and the morphology of the Ha filaments. The Ha filaments are oriented in the direction of the X-ray cavities, suggesting that the warm gas responsible for the Halpha emission originated near the center of NGC 5044 and was dredged up behind the buoyant, AGN-inflated X-ray cavities. A detailed spectroscopic analysis shows that the central region of NGC 5044 contains spatially varying amounts of multiphase gas. The regions with the most inhomogeneous gas temperature distribution tend to correlate with the extended 235 MHz and 610 MHz radio emission detected by the GMRT. This may result from gas entrainment within the radio emitting plasma or mixing of different temperature gas in the regions surrounding the radio emitting plasma by AGN induced turbulence. Accounting for the effects of multiphase gas, we find that the abundance of heavy elements is fairly uniform within the central 100 kpc, with abundances of 60-80% solar for all elements except oxygen, which has a significantly sub-solar abundance. In the absence of continued AGN outbursts, the gas in the center of NGC 5044 should attain a more homogeneous distribution of gas temperature through the dissipation of turbulent kinetic energy and heat conduction in approximately 10e8 yr. The presence of multiphase gas in NGC 5044 indicates that the time between recent AGN outbursts has been less than approximately 10e8 yr.
(Context) In recent years, our understanding of the cool cores of galaxy clusters has changed. Once thought to be relatively simple places where gas cools and flows toward the centre, now they are believed to be very dynamic places where heating from the central Active Galactic Nucleus (AGN) and cooling, as inferred from active star formation, molecular gas, and Halpha nebulosity, find an uneasy energetic balance. (Aims) We want to characterize the X-ray properties of the nearby cool-core cluster Zw1742+3306, selected because it is bright at X-ray (with a flux greater than 1e-11 erg/s/cm2 in the 0.1-2.4 keV band) and Halpha wavelengths (Halpha luminosity > 1e40 erg/s). (Methods) We used Chandra data to analyze the spatial and spectral properties of the cool core of Zw1742+3306, a galaxy cluster at z=0.0757 that emits in Halpha and presents the brightest central galaxy located in a diffuse X-ray emission with multiple peaks in surface brightness. (Results) We show that the X-ray cool core of the galaxy cluster Zw1742+3306 is thermodynamically very active with evidence of cold fronts and a weak shock in the surface brightness map and of an apparently coherent, elongated structure with metallicity greater than the value measured in the surrounding ambient gas by about 50 per cent. This anisotropic structure is 280 x 90 kpc2 and is aligned with the cold fronts and with the X-ray emission on larger scales. We suggest that all these peculiarities in the X-ray emission of Zw1742+3306 are either a very fine-tuned output of a sloshing gas in the cluster core or the product of a metal-rich outflow from the central AGN.
We present multicolour imaging for 33 dwarf and intermediate-luminosity galaxies in the field of the NGC 5044 Group, complemented with mid-resolution spectroscopy for a subsample of 13 objects. With these data, a revised membership and morphological classification is made for the galaxies in the sample. We were able to confirm all but one of the definite members included in the spectroscopic subsample, which were originally classified based on morphological criteria; however, an important fraction of background galaxies is probably present among likely and possible members. The presence of a nucleus could be detected in just five out of the nine galaxies originally classified as dE,N, thus confirming the intrisic difficulty of photographic-plate morphological classification for this kind of object. Our deep surface photometry provided clear evidences for disc structure in at least three galaxies previously catalogued as dE or dS0. Their transition-type properties are also evident from the colour-magnitude diagram, where they lie near the late-type galaxies locus, suggesting an evolutionary connection between a parent disc-galaxy population and at least part of present-day dEs. Six new dSph candidates were also found, most of them at small projected distances from NGC 5044, the central galaxy of the Group. The NGC 5044 Group appears clearly defined in redshift space, with a mean heliocentric radial velocity, <v_r>=2461 +/- 84 km/s (z=0.0082), and a moderate dispersion, sigma_{v_r}=431 km/s. Our data show no luminosity segregation for early-type galaxies: both dwarf and bright E/S0 systems show very similar velocity distributions (sigma_{v_r} ~ 290 km/s), in contrast to late-type galaxies that seem to display a broader distribution (sigma_{v_r} ~ 680 km/s).
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا