ﻻ يوجد ملخص باللغة العربية
We test the validity of the QCD sum rules applied to the meson $Z^+(4430)$, by considering a diquark-antidiquark type of current with $J^{P}=0^{-}$ and with $J^{P}=1^{-}$. We find that, with the studied currents, it is possible to find an acceptable Borel window. In such a Borel window we have simultaneously a good OPE convergence and a pole contribution which is bigger than the continuum contribution. We get $m_Z=(4.52pm0.09)GeV$ and $m_Z=(4.84pm0.14)GeV$ for the currents with $J^{P}=0^{-}$ and $J^{P}=1^{-}$ respectively. We conclude that the QCD sum rules results favors $J^{P}=0^{-}$ quantum numbers for the $Z^+(4430)$ meson.
We use QCD sum rules to study the recently observed meson $Z^+(4430)$, considered as a $D^*D_1$ molecule with $J^{P}=0^{-}$. We consider the contributions of condensates up to dimension eight and work at leading order in $alpha_s$. We get $m_Z=(4.40p
We suggest that the recently discovered charm-strange meson D_sJ(2632), with unusual properties, could be a cyptoexotic tetraquark baryonium state cdd_bars_bar. We predict other four narrow states, as Regge recurrences of D_sJ(2632), below the possible baryon-antibaryon thresholds.
The decay $B^0to psi(2S) K^+pi^-$ is analyzed using $rm 3~fb^{-1}$ of $pp$ collision data collected with the LHCb detector. A model-independent description of the $psi(2S) pi$ mass spectrum is obtained, using as input the $Kpi$ mass spectrum and angu
Resonant structures in $B^0topsipi^-K^+$ decays are analyzed by performing a four-dimensional fit of the decay amplitude, using $pp$ collision data corresponding to $rm 3 fb^{-1}$ collected with the LHCb detector. The data cannot be described with $K
We propose to describe the heavy and exotic tetraquark state as a holographic molecule by binding the lightest heavy-light meson $(0^-, 1^-)$ multiplet to a flavored sphaleron in the bulk of the Witten-Sakai-Sugimoto model. The strongly bound tetraqu