ﻻ يوجد ملخص باللغة العربية
Evolutionary mechanism in a self-organized system cause some functional changes that force to adapt new conformation of the interaction pattern between the components of that system. Measuring the structural differences one can retrace the evolutionary relation between two systems. We present a method to quantify the topological distance between two networks of different sizes, finding that the architectures of the networks are more similar within the same class than the outside of their class. With 43 cellular networks of different species, we show that the evolutionary relationship can be elucidated from the structural distances.
We derive a class of generalized statistics, unifying the Bose and Fermi ones, that describe any system where the first-occupation energies or probabilities are different from subsequent ones, as in presence of thresholds, saturation, or aging. The s
We study several bayesian inference problems for irreversible stochastic epidemic models on networks from a statistical physics viewpoint. We derive equations which allow to accurately compute the posterior distribution of the time evolution of the s
The study of record statistics of correlated series is gaining momentum. In this work, we study the records statistics of the time series of select stock market data and the geometric random walk, primarily through simulations. We show that the distr
Movement tracks of wild animals frequently fit models of anomalous rather than simple diffusion, mostly reported as ergodic superdiffusive motion combining area-restricted search within a local patch and larger-scale commuting between patches, as hig
A symmetry-guided definition of time may enhance and simplify the analysis of historical series with recurrent patterns and seasonalities. By enforcing simple-scaling and stationarity of the distributions of returns, we identify a successful protocol