ترغب بنشر مسار تعليمي؟ اضغط هنا

Mass production test of Hamamatsu MPPC for T2K neutrino oscillation experiment

273   0   0.0 ( 0 )
 نشر من قبل Masashi Yokoyama
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

In the T2K near neutrino detectors, about 60 000 Hamamatsu Multi-Pixel Photon Counters (MPPCs) will be used. The mass production of MPPC has started in February 2008.In order to perform quality assurance and to characterize each device, we have developed an MPPC test system. For each MPPC, gain, breakdown voltage, noise rate, photo detection efficiency, and cross-talk and after-pulse rate are measured as functions of the bias voltage and temperature. The design of the test system and the measurement procedure are described.



قيم البحث

اقرأ أيضاً

426 - M. Yokoyama , T. Nakaya , S. Gomi 2008
A special type of Hamamatsu MPPC, with a sensitive area of 1.3x1.3mm^2 containing 667 pixels with 50x50um^2 each, has been developed for the near neutrino detector in the T2K long baseline neutrino experiment. About 60 000 MPPCs will be used in total to read out the plastic scintillator detectors with wavelength shifting fibers. We report on the basic performance of MPPCs produced for T2K.
This article describes the design and performance of the muon monitor for the T2K (Tokaito-Kamioka) long baseline neutrino oscillation experiment. The muon monitor consists of two types of detector arrays: ionization chambers and silicon PIN photodio des. It measures the intensity and profile of muons produced, along with neutrinos, in the decay of pions. The measurement is sensitive to the intensity and direction of the neutrino beam. The linearity and stability of the detectors were measured in beam tests to be within 2.4% and 1.5%, respectively. Based on the test results, the precision of the beam direction measured by the muon monitor is expected to be 0.25 mrad.
137 - A. Izmaylov , S. Aoki , J. Blocki 2009
The T2K neutrino experiment at J-PARC uses a set of near detectors to measure the properties of an unoscillated neutrino beam and neutrino interaction cross-sections. One of the sub-detectors of the near-detector complex, the side muon range detector (SMRD), is described in the paper. The detector is designed to help measure the neutrino energy spectrum, to identify background and to calibrate the other detectors. The active elements of the SMRD consist of 0.7 cm thick extruded scintillator slabs inserted into air gaps of the UA1 magnet yokes. The readout of each scintillator slab is provided through a single WLS fiber embedded into a serpentine shaped groove. Two Hamamatsu multi-pixel avalanche photodiodes (MPPCs) are coupled to both ends of the WLS fiber. This design allows us to achieve a high MIP detection efficiency of greater than 99%. A light yield of 25-50 p.e./MIP, a time resolution of about 1 ns and a spatial resolution along the slab better than 10 cm were obtained for the SMRD counters.
160 - K.Abe , J.Adam , H.Aihara 2014
The observation of the recent electron neutrino appearance in a muon neutrino beam and the high-precision measurement of the mixing angle $theta_{13}$ have led to a re-evaluation of the physics potential of the T2K long-baseline neutrino oscillation experiment. Sensitivities are explored for CP violation in neutrinos, non-maximal $sin^22theta_{23}$, the octant of $theta_{23}$, and the mass hierarchy, in addition to the measurements of $delta_{CP}$, $sin^2theta_{23}$, and $Delta m^2_{32}$, for various combinations of $ u$-mode and (bar{ u})-mode data-taking. With an exposure of $7.8times10^{21}$~protons-on-target, T2K can achieve 1-$sigma$ resolution of 0.050(0.054) on $sin^2theta_{23}$ and $0.040(0.045)times10^{-3}~rm{eV}^2$ on $Delta m^2_{32}$ for 100%(50%) neutrino beam mode running assuming $sin^2theta_{23}=0.5$ and $Delta m^2_{32} = 2.4times10^{-3}$ eV$^2$. T2K will have sensitivity to the CP-violating phase $delta_{rm{CP}}$ at 90% C.L. or better over a significant range. For example, if $sin^22theta_{23}$ is maximal (i.e $theta_{23}$=$45^circ$) the range is $-115^circ<delta_{rm{CP}}<-60^circ$ for normal hierarchy and $+50^circ<delta_{rm{CP}}<+130^circ$ for inverted hierarchy. When T2K data is combined with data from the NO$ u$A experiment, the region of oscillation parameter space where there is sensitivity to observe a non-zero $delta_{CP}$ is substantially increased compared to if each experiment is analyzed alone.
COSINE-200 is the next phase of the ongoing COSINE-100 experiment. The main purpose of the experiment is the performance of an unambiguous verification of the annual modulation signals observed by the DAMA experiment. The success of the experiment cr itically depends on the production of a 200 kg array of ultra-pure NaI(Tl) crystal detectors that have lower backgrounds than the DAMA crystals. The purification of raw powder is the initial but important step toward the production of ultra-pure NaI(Tl) detectors. We have already demonstrated that fractional recrystallization from water solutions is an effective method for the removal of the problematic K and Pb elements. For the mass production of purified powder, a clean facility for the fractional recrystallization had been constructed at the Institute for Basic Science (IBS), Korea. Here, we report the design of the purification process, material recovery, and performance of the NaI powder purification facility.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا