ﻻ يوجد ملخص باللغة العربية
Complementary $^{77}$Se nuclear magnetic resonance (NMR) and electrical transport have been used to correlate the spin density dynamics with the subphases of the field-induced spin density wave (FISDW) ground state in tmt. We find that the peaks in the spin-lattice relaxation rate 1/T$_1$ appear within the metal-FISDW phase boundary and/or at first-order subphase transitions. In the quantum limit above 25 T, the NMR data gives an insight into the FISDW electronic structure.
We have investigated the origin of the large increase in spin-echo decay rates for the $^{77}$Se nuclear spins at temperatures near to $T=30K$ in the organic superconductor (TMTSF)$_2$ClO$_4$. The measured angular dependence of $T_2^{-1}$ demonstrate
We have performed $^{77}$Se NMR on a single crystal sample of the field induced superconductor $lambda$-(BETS)$_{2}$FeCl$_{4}$. Our results obtained in the paramagnetic state provide a microscopic insight on the exchange interaction $J$ between the s
Magnetoresistance measurements have been carried out along the highly conducting a axis in the FISDW phase of hydrogened and deuterated (TMTSF)$_2$ClO$_4$ for various cooling rates through the anion ordering temperature. With increasing the cooling r
Magnetoresistance measurements on the quasi one-dimensional organic conductor (TMTSF)_2PF_6 performed in magnetic fields B up to 16T, temperatures T down to 0.12K and under pressures P up to 14kbar have revealed new phases on its P-B-T phase diagram.
In order to study the spin density wave transition temperature (T_SDW) in (TMTSF)_2PF_6 as a function of magnetic field, we measured the magnetoresistance R_zz in fields up to 19 T. Measurements were performed for three field orientations B||a, b and