ترغب بنشر مسار تعليمي؟ اضغط هنا

Non-thermal emission in the core of Perseus: results from a long XMM-Newton observation

119   0   0.0 ( 0 )
 نشر من قبل Silvano Molendi
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We employ a long XMM-Newton observation of the core of the Perseus cluster to validate claims of a non-thermal component discovered with Chandra. From a meticulous analysis of our dataset, which includes a detailed treatment of systematic errors, we find the 2-10 keV surface brightness of the non-thermal component to be smaller than about 5x10^-16 erg cm^-2s^-1arcsec^-2. The most likely explanation for the discrepancy between the XMM-Newton and Chandra estimates is a problem in the effective area calibration of the latter. Our EPIC based magnetic field lower limits are not in disagreement with Faraday rotation measure estimates on a few cool cores and with a minimum energy estimate on Perseus. In the not too distant future Simbol-X may allow detection of non-thermal components with intensities more than 10 times smaller than those that can be measured with EPIC; nonetheless even the exquisite sensitivity within reach for Simbol-X might be insufficient to detect the IC emission from Perseus.



قيم البحث

اقرأ أيضاً

60 - G. Migliori 2005
X-ray emission from the eastern radio lobe of the FRII Radio Galaxy Pictor A was serendipitously discovered by a short observation of XMM-Newton in 2001. The X-ray spectrum, accumulated on a region covering about half of the entire radio lobe, was we ll described by both a thermal model and a power law, making non-univocal the physical interpretation. A new XMM-Newton observation performed in 2005 has allowed the detection of the X-ray emission from both radio lobes and unambiguously revealed its non-thermal origin. The X-ray emission is due to Inverse Compton (IC) of the cosmic microwave background photons by relativistic electrons in the lobe. We confirm the discrepancy between the magnetic field, as deduced from the comparison of the IC X-ray and radio fluxes, and the equipartition value.
We present results from an XMM-Newton observation of the head-tail radio galaxy IC 310 located in the southwest region of the Perseus cluster. The spectrum is well-fitted by an absorbed power-law model with a photon index of $2.50 pm 0.02$ with no si gnificant absorption excess. The X-ray image shows a point-like emission at IC 310 without any signs of a structure correlated with the radio halo tail. The temperature of the intracluster medium surrounding IC 310 declines as a function of distance from the cluster center, from $ kT sim 6$ keV in the northeast corner of the field of view to about 3 keV in the southwest region. Although we do not find any sharp edges in the surface brightness profile, a brightness excess over a smooth $beta$ model by about 20% is seen. The temperature also rises by about 10% in the same region. This indicates that the IC 310 region is a subcluster probably infalling into the Perseus cluster, and the gas in front of IC 310 towards the Perseus cluster is likely to be compressed by the large-scale motion, which supports the view that the IC 310 system is undergoing a merger.
We have attempted to analyse all the available data taken by XMM-Newton as it slews between targets. This slew survey, the resultant source catalogue and the analysis procedures used are described in an accompanying paper. In this letter we present t he initial science results from the survey. To date, detailed source-searching has been performed in three X-ray bands (soft, hard and total) in the EPIC-pn 0.2-12 keV band over ~6300 sq.degrees (~15% of the sky), and of order 4000 X-ray sources have been detected (~55% of which have IDs). A great variety of sources are seen, including AGN, galaxies, clusters and groups, active stars, SNRs, low- and high-mass XRBs and white dwarfs. In particular, as this survey constitutes the deepest ever hard-band 2-12 keV all-sky survey, a large number of hard sources are detected. Furthermore, the great sensitivity and low-background of the EPIC-pn camera are especially suited to emission from extended sources, and interesting spatial structure is observed in many supernova remnants and clusters of galaxies. The instrument is very adept at mapping large areas of the X-ray sky. Also, as the slew survey is well matched to the ROSAT all-sky survey, long-term variability studies are possible, and a number of extremely variable X-ray sources, some possibly due to the tidal disruption of stars by central supermassive black holes, have been discovered.
(Abridged) We present a spectral analysis of a deep (220 ks) XMM-Newton observation of the Phoenix cluster (SPT-CL J2344-4243), which we also combine with Chandra archival ACIS-I data. We extract CCD and RGS X-ray spectra from the core region to sear ch for the signature of cold gas, and constrain the mass deposition rate in the cooling flow which is thought to be responsible of the massive star formation episode observed in the BCG. We find an average mass deposition rate of $dot M = 620 (-190 +200)_{stat} (-50 +150)_{syst} M_odot$/yr in the temperature range 0.3-3.0 keV from MOS data. A temperature-resolved analysis shows that a significant amount of gas is deposited only above 1.8 keV, while upper limits of the order of hundreds of $M_odot$/yr can be put in the 0.3-1.8 keV temperature range. From pn data we obtain $dot M = 210 (-80 +85)_{stat} ( -35 +60)_{syst} M_odot$/yr, and the upper limits from the temperature-resolved analysis are typically a factor of 3 lower than MOS data. In the RGS spectrum, no line emission from ionization states below Fe XXIII is seen above $12 AA$, and the amount of gas cooling below $sim 3$ keV has a best-fit value $dot M = 122_{-122}^{+343}$ $M_{odot}$/yr. In addition, our analysis of the FIR SED of the BCG based on Herschel data provides $SFR = (530 pm 50) M_odot$/yr, significantly lower than previous estimates by a factor 1.5. Current data are able to firmly identify substantial amount of cooling gas only above 1.8 keV in the core of the Phoenix cluster. While MOS data analysis is consistent with values as high as $dot M sim 1000$ within $1 sigma$, pn data provide $dot M < 500 M_odot$ yr$^{-1}$ at $3sigma$ c.l. at temperature below 1.8 keV. At present, this discrepancy cannot be explained on the basis of known calibration uncertainties or other sources of statistical noise.
Based on the XMM-Newton large program on SN1006 and our newly developed spatially resolved spectroscopy tools (Paper~I), we study the thermal emission from ISM and ejecta of SN1006 by analyzing the spectra extracted from 583 tessellated regions domin ated by thermal emission. With some key improvements in spectral analysis as compared to Paper~I, we obtain much better spectral fitting results with less residuals. The spatial distributions of the thermal and ionization states of the ISM and ejecta show different features, which are consistent with a scenario that the ISM (ejecta) is heated and ionized by the forward (reverse) shock propagating outward (inward). Different elements have different spatial distributions and origins, with Ne mostly from the ISM, Si and S from the ejecta, and O and Mg from both ISM and ejecta. Fe L-shell lines are only detected in a small shell-like region SE to the center of SN1006, indicating that most of the Fe-rich ejecta has not yet or just recently been reached by the reverse shock. The overall ejecta abundance patterns for most of the heavy elements, except for Fe and sometimes S, are consistent with typical Type~Ia SN products. The NW half of the SNR interior probably represents a region with turbulently mixed ISM and ejecta, so has enhanced emission from O, Mg, Si, S, lower ejecta temperature, and a large diversity of ionization age. In addition to the asymmetric ISM distribution, an asymmetric explosion of the progenitor star is also needed to explain the asymmetric ejecta distribution.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا