ترغب بنشر مسار تعليمي؟ اضغط هنا

Equilibrium tuned by a magnetic field in phase separated manganite

138   0   0.0 ( 0 )
 نشر من قبل Mariano H. Quintero
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present magnetic and transport measurements on La5/8-yPryCa3/8MnO3 with y = 0.3, a manganite compound exhibiting intrinsic multiphase coexistence of sub-micrometric ferromagnetic and antiferromagnetic charge ordered regions. Time relaxation effects between 60 and 120K, and the obtained magnetic and resistive viscosities, unveils the dynamic nature of the phase separated state. An experimental procedure based on the derivative of the time relaxation after the application and removal of a magnetic field enables the determination of the otherwise unreachable equilibrium state of the phase separated system. With this procedure the equilibrium phase fraction for zero field as a function of temperature is obtained. The presented results allow a correlation between the distance of the system to the equilibrium state and its relaxation behavior.



قيم البحث

اقرأ أيضاً

150 - Kaixuan Zhang , Lin Li , Hui Li 2021
One-dimensional (1D) confinement has been revealed to effectively tune the properties of materials in homogeneous states. The 1D physics can be further enriched by electronic inhomogeneity, which unfortunately remains largely unknown. Here we demonst rate the ultra-high sensitivity to magnetic fluctuations and the tunability of phase stability in the electronic transport properties of self-assembled electronically phase-separated manganite nanowires with extreme aspect ratio. The onset of magnetic nano-droplet state, a precursor to the ferromagnetic metallic state, is unambiguously revealed, which is attributed to the small lateral size of the nanowires that is comparable to the droplet size. Moreover, the quasi-1D anisotropy stabilizes thin insulating domains to form intrinsic tunneling junctions in the low temperature range, which is robust even under magnetic field up to 14 T, and thus essentially modifies the classic 1D percolation picture to stabilize a novel quantum percolation state. A new phase diagram is therefore established for the manganite system under quasi-1D confinement for the first time. Our findings offer new insight to understand and manipulate the colorful properties of the electronically phase-separated systems via dimensionality engineering.
205 - C. Yaicle , C. Martin , Z. Jirak 2003
Substitutions at the Mn-site of the charge-ordered Pr0.5Ca0.5MnO3 manganite is an effective way to induce abrupt jumps on the magnetic field driven magnetization curve. In order to get new insights into the origin of this remarkable feature, the Pr0. 5Ca0.5Mn0.97Ga0.03O3 perovskite manganite has been studied by neutron diffraction, versus temperature and at 2.5K in an applied magnetic field up to 6 Tesla. A weak and complex antiferromagnetic order is found for the low temperature ground-state. Magnetic transitions, associated with structural ones, are evidenced for certain strengths of magnetic field, which gives rise to the step-like behavior corresponding to the magnetization curve. Small angle neutron scattering provides evidence for a nucleation process of micron size ferromagnetic domains which follows the magnetization behavior.
Kondo insulators are predicted to undergo an insulator-to-metal transition under applied magnetic field, yet the extremely high fields required to date have prohibited a comprehensive investigation of the nature of this transition. Here we show that Ce3Bi4Pd3 provides an ideal platform for this investigation, owing to the unusually small magnetic field of B ~ 11 T required to overcome its Kondo insulating gap. Above Bc, we find a magnetic field-induced Fermi liquid state whose characteristic energy scale T_FL collapses near Bc in a manner indicative of a magnetic field-tuned quantum critical point. A direct connection is established with the process of Kondo singlet formation, which yields a broad maximum in the magnetic susceptibility as a function of temperature in weak magnetic fields that evolves progressively into a sharper transition at Bc as T -> 0.
We investigate the phase separated inhomogeneous charge and spin states in magnetic oxides. In particular, we study one dimensional harmonic waves and stripe structures. We show that harmonic spin charge waves are unstable and inevitably transform in to two or three dimensional structures, while the stripe structures can be stable for certain parameters. Such stripe structures may allow the control of magnetic state with electric field in a magnetic oxide thin film.
We consider phase separated states in magnetic oxides (MO) thin films. We show that these states have a non-zero electric polarization. Moreover, the polarization is intimately related to a spatial distribution of magnetization in the film. Polarized states with opposite polarization and opposite magnetic configuration are degenerate. An external electric field removes the degeneracy and allows to switch between the two states. So, one can control electric polarization and magnetic configuration of the phase separated MO thin film with the external electric field.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا