ﻻ يوجد ملخص باللغة العربية
The Dirac equation for the electron around a five-dimensional rotating black hole with two different angular momenta is separated into purely radial and purely angular equations. The general solution is expressed as a superposition of solutions derived from these two decoupled ordinary differential equations. By separating variables for the massive Klein-Gordon equation in the same space-time background, I derive a simple and elegant form for the Stackel-Killing tensor, which can be easily written as the square of a rank-three Killing-Yano tensor. I have also explicitly constructed a symmetry operator that commutes with the scalar Laplacian by using the Stackel-Killing tensor, and the one with the Dirac operator by the Killing-Yano tensor admitted by the five-dimensional Myers-Perry metric, respectively.
We investigate the separability of Klein-Gordon equation on near horizon of d-dimensional rotating Myers-Perry black hole in two limits : 1) generic extremal case and 2) extremal vanishing horizon case. In the first case , there is a relation between
It is shown that the Dirac equation is separable by variables in a five-dimensional rotating Kerr-(anti-)de Sitter black hole with two independent angular momenta. A first order symmetry operator that commutes with the Dirac operator is constructed i
The Newman-Janis and Giampieri algorithms are two simple methods to generate stationary rotating black hole solutions in four dimensions. In this paper, we obtain the Mayers-Perry black hole from the Schwartzchild solution in five dimensions using qu
We show that the Killing spinor equations of all supergravity theories which may include higher order corrections on a (r,s)-signature spacetime are associated with twisted covariant form hierarchies. These hierarchies are characterized by a connecti
We present a new vacuum solution of Einsteins equations describing the near horizon region of two neutral, extreme (zero-temperature), co-rotating, non-identical Kerr black holes. The metric is stationary, asymptotically near horizon extremal Kerr (N