ﻻ يوجد ملخص باللغة العربية
Document networks are characteristic in that a document node, e.g. a webpage or an article, carries meaningful content. Properties of document networks are not only affected by topological connectivity between nodes, but also strongly influenced by the semantic relation between content of the nodes. We observe that document networks have a large number of triangles and a high value of clustering coefficient. And there is a strong correlation between the probability of formation of a triangle and the content similarity among the three nodes involved. We propose the degree-similarity product (DSP) model which well reproduces these properties. The model achieves this by using a preferential attachment mechanism which favours the linkage between nodes that are both popular and similar. This work is a step forward towards a better understanding of the structure and evolution of document networks.
Algorithms for community detection are usually stochastic, leading to different partitions for different choices of random seeds. Consensus clustering has proven to be an effective technique to derive more stable and accurate partitions than the ones
Networks with underlying metric spaces attract increasing research attention in network science, statistical physics, applied mathematics, computer science, sociology, and other fields. This attention is further amplified by the current surge of acti
Many real-world networks display a natural bipartite structure. It is necessary and important to study the bipartite networks by using the bipartite structure of the data. Here we propose a modification of the clustering coefficient given by the frac
Network models with latent geometry have been used successfully in many applications in network science and other disciplines, yet it is usually impossible to tell if a given real network is geometric, meaning if it is a typical element in an ensembl
A bridge in a graph is an edge whose removal disconnects the graph and increases the number of connected components. We calculate the fraction of bridges in a wide range of real-world networks and their randomized counterparts. We find that real netw