ﻻ يوجد ملخص باللغة العربية
This paper provides a unified method for analyzing chaos synchronization of the generalized Lorenz systems. The considered synchronization scheme consists of identical master and slave generalized Lorenz systems coupled by linear state error variables. A sufficient synchronization criterion for a general linear state error feedback controller is rigorously proven by means of linearization and Lyapunovs direct methods. When a simple linear controller is used in the scheme, some easily implemented algebraic synchronization conditions are derived based on the upper and lower bounds of the master chaotic system. These criteria are further optimized to improve their sharpness. The optimized criteria are then applied to four typical generalized Lorenz systems, i.e. the classical Lorenz system, the Chen system, the Lv system and a unified chaotic system, obtaining precise corresponding synchronization conditions. The advantages of the new criteria are revealed by analytically and numerically comparing their sharpness with that of the known criteria existing in the literature.
We extend the concept of generalized synchronization of chaos, a phenomenon that occurs in driven dynamical systems, to the context of autonomous spatiotemporal systems. It means a situation where the chaotic state variables in an autonomous system c
A three-component dynamic system with influence of pumping and nonlinear dissipation describing a quantum cavity electrodynamic device is studied. Different dynamical regimes are investigated in terms of divergent trajectories approaches and fractal
In this article we synchronize by active control method all 19 identical Sprott systems provided in paper [10]. Particularly, we find the corresponding active controllers as well as we perform (as an example) the numerical synchronization of two Sprott-A models.
This article briefly introduces the generalized Lorenz systems family, which includes the classical Lorenz system and the relatively new Chen system as special cases, with infinitely many related but not topologically equivalent chaotic systems in between.
We investigate the parametric evolution of riddled basins related to synchronization of chaos in two coupled piecewise-linear Lorenz maps. Riddling means that the basin of the synchronized attractor is shown to be riddled with holes belonging to anot