ﻻ يوجد ملخص باللغة العربية
Let $Omega$ be a two-dimensional heat conduction body. We consider the problem of determining the heat source $F(x,t)=varphi(t)f(x,y)$ with $varphi$ be given inexactly and $f$ be unknown. The problem is nonlinear and ill-posed. By a specific form of Fourier transforms, we shall show that the heat source is determined uniquely by the minimum boundary condition and the temperature distribution in $Omega$ at the initial time $t=0$ and at the final time $t=1$. Using the methods of Tikhonovs regularization and truncated integration, we construct the regularized solutions. Numerical part is given.
In this work, an inverse problem in the fractional diffusion equation with random source is considered. Statistical moments are used of the realizations of single point observation $u(x_0,t,omega).$ We build the representation of the solution $u$ in
We consider the nonlinear Schrodinger equation [ u_t = i Delta u + | u |^alpha u quad mbox{on ${mathbb R}^N $, $alpha>0$,} ] for $H^1$-subcritical or critical nonlinearities: $(N-2) alpha le 4$. Under the additional technical assumptions $alphageq 2$
We have shown in a recent collaboration that the Cauchy problem for the multi-dimensional Burgers equation is well-posed when the initial data u(0) is taken in the Lebesgue space L 1 (R n), and more generally in L p (R n). We investigate here the sit
We consider the nonlinear heat equation with a nonlinear gradient term: $partial_t u =Delta u+mu| abla u|^q+|u|^{p-1}u,; mu>0,; q=2p/(p+1),; p>3,; tin (0,T),; xin R^N.$ We construct a solution which blows up in finite time $T>0.$ We also give a sharp
We prove logarithmic stability in the parabolic inverse problem of determining the space-varying factor in the source, by a single partial boundary measurement of the solution to the heat equation in an infinite closed waveguide, with homogeneous initial and Dirichlet data.