ﻻ يوجد ملخص باللغة العربية
With the aim at quantitatively investigating the longstanding problem concerning the effect of short range nucleon-nucleon correlations on scattering processes at high energies, the total neutron-nucleus cross section is calculated within a parameter-free approach which, for the first time, takes into account, simultaneously, central, spin, isospin and tensor nucleon-nucleon (NN) correlations, and Glauber elastic and Gribov inelastic shadowing corrections. Nuclei ranging from 4He to 208Pb and incident neutron momenta in the range 3 GeV/c - 300 GeV/c are considered; the commonly used approach which approximates the square of the nuclear wave function by a product of one-body densities is carefully analyzed, showing that NN correlations can play a non-negligible role in high energy scattering off nuclei.
The total neutron-Nucleus cross section has been calculated within an approach which takes into account nucleon-nucleon correlations, Glauber multiple scattering and inelastic shadowing corrections. Nuclear targets ranging from 4He to 208Pb and neutr
A new linked cluster expansion for the calculation of ground state observables of complex nuclei with realistic interactions has been developed [1-3]; using the V8 potential [4] the ground state energy, density and momentum distribution of complex nu
The effects of short range correlations in lepton and hadron scattering off nuclei at medium and high energies are discussed.
An improved procedure is suggested for finding the total photoabsorption cross section on the neutron from data on the deuteron at energies < 1.5 GeV. It includes unfolding of smearing effects caused by Fermi motion of nucleons in the deuteron and al
Measurements of neutron total cross-sections are both extensive and extremely accurate. Although they place a strong constraint on theoretically constructed models, there are relatively few comparisons of predictions with experiment. The total cross-