ﻻ يوجد ملخص باللغة العربية
We investigate the spatiotemporal dynamics of a lattice of coupled chaotic maps whose coupling connections are dynamically rewired to random sites with probability p, namely at any instance of time, with probability p a regular link is switched to a random one. In a range of weak coupling, where spatiotemporal chaos exists for regular lattices (i.e. for p = 0), we find that p > 0 yields synchronized periodic orbits. Further we observe that this regularity occurs over a window of p values, beyond which the basin of attraction of the synchronized cycle shrinks to zero. Thus we have evidence of an optimal range of randomness in coupling connections, where spatiotemporal regularity is efficiently obtained. This is in contrast to the commonly observed monotonic increase of synchronization with increasing p, as seen for instance, in the strong coupling regime of the very same system.
It was observed that the spatiotemporal chaos in lattices of coupled chaotic maps was suppressed to a spatiotemporal fixed point when some fraction of the regular coupling connections were replaced by random links. Here we investigate the effects of
Extreme events such as rogue wave in optics and fluids are often associated with the merging dynamics of coherent structures. We present experimental and numerical results on the physics of extreme events appearance in a spatially extended semiconduc
We study Lyapunov vectors (LVs) corresponding to the largest Lyapunov exponents in systems with spatiotemporal chaos. We focus on characteristic LVs and compare the results with backward LVs obtained via successive Gram-Schmidt orthonormalizations. S
We investigate the nonlinear effect of a pendulum with the upper end fixed to an elastic rod which is only allowed to vibrate horizontally. The pendulum will start rotating and trace a delicate stationary pattern when released without initial angular
Two types of spatiotemporal chaos exhibited by ensembles of coupled nonlinear oscillators are analyzed using independent component analysis (ICA). For diffusively coupled complex Ginzburg-Landau oscillators that exhibit smooth amplitude patterns, ICA