ﻻ يوجد ملخص باللغة العربية
Here we report the synthesis and basic characterization of LaFe1-xCoxAsO for several values of x. The parent phase LaFeAsO orders antiferromagnetically (TN ~ 145 K). Replacing Fe with Co is expected to both electron dope the system and introduce disorder in the FeAs layer. For x = 0.05 antiferromagnetic order is destroyed and superconductivity is observed at Tconset = 11.2 K. For x = 0.11 superconductivity is observed at Tc(onset) = 14.3 K, and for x = 0.15 Tc = 6.0 K. Superconductivity is not observed for x = 0.2 and 0.5, but for x = 1, the material appears to be ferromagnetic (Tc ~ 56 K) as judged by magnetization measurements. We conclude that Co is an effective dopant to induce superconductivity. Somewhat surprisingly, the system appears to tolerate considerable disorder in the FeAs planes.
We report superconductivity in the SmFe0.9Co0.1AsO system being prepared by most easy and versatile single step solid-state reaction route. The parent compound SmFeAsO is non-superconducting but shows the spin density wave (SDW) like antiferromagneti
We have studied Ni-substitution effect in LaFe$_{1-x}$Ni$_{x}$AsO ($0leq x leq0.1$) by the measurements of x-ray diffraction, electrical resistivity, magnetic susceptibility, and heat capacity. The nickel doping drastically suppresses the resistivity
We report Zn-doping effect in the parent and F-doped LaFeAsO oxy-arsenides. Slight Zn doping in LaFe$_{1-x}$Zn$_{x}$AsO drastically suppresses the resistivity anomaly around 150 K associated with the antiferromagnetic (AFM) spin density wave (SDW) in
Here we report the synthesis and basic characterization of SmFe1-xCoxAsO (x=0.10, 0.15). The parent compound SmFeAsO itself is not superconducting but shows an antiferromagnetic order near 150 K, which must be suppressed by doping before superconduct
By a systematic study of the hydrogen-doped LaFeAsO system by means of dc resistivity, dc magnetometry, and muon-spin spectroscopy we addressed the question of universality of the phase diagram of rare-earth-1111 pnictides. In many respects, the beha