ترغب بنشر مسار تعليمي؟ اضغط هنا

Graphene Oxidation: Thickness Dependent Etching and Strong Chemical Doping

455   0   0.0 ( 0 )
 نشر من قبل Sunmin Ryu
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

Patterned graphene shows substantial potential for applications in future molecular-scale integrated electronics. Environmental effects are a critical issue in a single layer material where every atom is on the surface. Especially intriguing is the variety of rich chemical interactions shown by molecular oxygen with aromatic molecules. We find that O2 etching kinetics vary strongly with the number of graphene layers in the sample. Three-layer-thick samples show etching similar to bulk natural graphite. Single-layer graphene reacts faster and shows random etch pits in contrast to natural graphite where nucleation occurs at point defects. In addition, basal plane oxygen species strongly hole dope graphene, with a Fermi level shift of ~0.5 eV. These oxygen species partially desorb in an Ar gas flow, or under irradiation by far UV light, and readsorb again in an O2 atmosphere at room temperature. This strongly doped graphene is very different than graphene oxide made by mineral acid attack.



قيم البحث

اقرأ أيضاً

This article addresses the much debated question whether the degree of hydrophobicity of single-layer graphene (1LG) is different from the one of double-layer graphene (2LG). Knowledge of the water affinity of graphene and its spatial variations is c ritically important as it can affect the graphene properties as well as the performance of graphene devices exposed to humidity. By employing chemical force microscopy (CFM) with a probe rendered hydrophobic by functionalization with octadecyltrichlorosilane (OTS), the adhesion force between the probe and epitaxial graphene on SiC has been measured in deionized water. Owing to the hydrophobic attraction, a larger adhesion force was measured on 2LG domains of graphene surfaces, thus showing that 2LG is more hydrophobic than 1LG. Identification of 1LG and 2LG domains was achieved through Kelvin probe force microscopy and Raman spectral mapping. Approximate values of the adhesion force per OTS molecule have been calculated through contact area analysis. Furthermore, the contrast of friction force images measured in contact mode was reversed to the 1LG/2LG adhesion contrast and its origin was discussed in terms of the likely water depletion over hydrophobic domains as well as deformation in the contact area between AFM tip and 1LG.
By using first principles calculations we report a chemical doping induced gap in graphene. The structural and electronic properties of CrO$_3$ interacting with graphene layer are calculated using ab initio methods based on the density functional the ory. The CrO$_3$ acts as an electron acceptor modifying the original electronic and magnetic properties of the graphene surface through a chemical adsorption. The changes induced in the electronic properties are strongly dependent of the CrO$_3$ adsorption site and for some sites it is possible to open a gap in the electronic band structure. Spin polarization effects are also predicted for some adsorption configurations.
We demonstrate anisotropic etching of single-layer graphene by thermally-activated nickel nanoparticles. Using this technique, we obtain sub-10nm nanoribbons and other graphene nanostructures with edges aligned along a single crystallographic directi on. We observe a new catalytic channeling behavior, whereby etched cuts do not intersect, resulting in continuously connected geometries. Raman spectroscopy and electronic measurements show that the quality of the graphene is resilient under the etching conditions, indicating that this method may serve as a powerful technique to produce graphene nanocircuits with well-defined crystallographic edges.
307 - V. Leca , D. H. A. Blank , 2012
A chemical etching method was developed for (110) and (001) NdGaO3 single crystal substrates in order to obtain an atomically flat GaO2-x - terminated surface. Depending on the surface step density the substrates were etched in pH-controlled NH4F- or NH4Cl-based solutions, followed by an annealing step at temperatures of 800-1000oC, in air or in oxygen flow, in order to recrystallize the surface. Atomic Force Microscopy (AFM) and high-pressure Reflection High Energy Electron Diffraction (RHEED) were used to analyse the surface morphology of the samples after every treatment. Studies on the chemistry and characteristics of the terminating layer showed that the chemically etched NdGaO3 substrate surface has a GaO2-x termination and that the (110) and (001) NdGaO3 surfaces are characterized by a different free surface energy, which is lower for latter.
The doping dependence of dry thermal oxidation rates in n-type 4H-SiC was investigated. The oxidation was performed in the temperature range 1000C to 1200C for samples with nitrogen doping in the range of 6.5e15/cm3 to 9.3e18/cm3, showing a clear dop ing dependence. Samples with higher doping concentrations displayed higher oxidation rates. The results were interpreted using a modified Deal-Grove model. Linear and parabolic rate constants and activation energies were extracted. Increasing nitrogen led to an increase in linear rate constant pre-exponential factor from 10-6m/s to 10-2m/s and the parabolic rate constant pre-exponential factor from 10e9m2/s to 10e6m2/s. The increase in linear rate constant was attributed to defects from doping-induced lattice mismatch, which tend to be more reactive than bulk crystal regions. The increase in the diffusion-limited parabolic rate constant was attributed to degradation in oxide quality originating from the doping-induced lattice mismatch. This degradation was confirmed by the observation of a decrease in optical density of the grown oxide films from 1.4 to 1.24. The linear activation energy varied from 1.6eV to 2.8eV, while the parabolic activation energy varied from 2.7eV to 3.3eV, increasing with doping concentration. These increased activation energies were attributed to higher nitrogen content, leading to an increase in effective bond energy stemming from the difference in C-Si (2.82eV) and Si-N (4.26eV) binding energies. This work provides crucial information in the engineering of SiO2 dielectrics for SiC MOS structures, which typically involve regions of very different doping concentrations, and suggests that thermal oxidation at high doping concentrations in SiC may be defect mediated.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا