ترغب بنشر مسار تعليمي؟ اضغط هنا

The Degasperis-Procesi equation with self-consistent sources

266   0   0.0 ( 0 )
 نشر من قبل Yehui Huang
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

The Degasperis-Procesi equation with self-consistent sources(DPESCS) is derived. The Lax representation and the conservation laws for DPESCS are constructed. The peakon solution of DPESCS is obtained.



قيم البحث

اقرأ أيضاً

We analyze the long-time asymptotics for the Degasperis--Procesi equation on the half-line. By applying nonlinear steepest descent techniques to an associated $3 times 3$-matrix valued Riemann--Hilbert problem, we find an explicit formula for the lea ding order asymptotics of the solution in the similarity region in terms of the initial and boundary values.
197 - Zhiwu Lin , Yue Liu 2007
The Degasperis-Procesi equation can be derived as a member of a one-parameter family of asymptotic shallow water approximations to the Euler equations with the same asymptotic accuracy as that of the Camassa-Holm equation. In this paper, we study the orbital stability problem of the peaked solitons to the Degasperis-Procesi equation on the line. By constructing a Liapunov function, we prove that the shapes of these peakon solitons are stable under small perturbations.
Based on our previous work to the Degasperis-Procesi equation (J. Phys. A 46 045205) and the integrable semi-discrete analogue of its short wave limit (J. Phys. A 48 135203), we derive an integrable semi-discrete Degasperis-Procesi equation by Hirota s bilinear method. Meanwhile, $N$-soliton solution to the semi-discrete Degasperis-Procesi equation is provided and proved. It is shown that the proposed semi-discrete Degasperis-Procesi equation, along with its $N$-soliton solution converge to ones of the original Degasperis-Procesi equation in the continuous limit.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا