ترغب بنشر مسار تعليمي؟ اضغط هنا

Echelle long-slit optical spectroscopy of evolved stars

131   0   0.0 ( 0 )
 نشر من قبل Armando Gil de Paz
 تاريخ النشر 2008
  مجال البحث فيزياء
والبحث باللغة English




اسأل ChatGPT حول البحث

We present echelle long-slit optical spectra of a sample of objects evolving off the AGB, most of them in the pre-planetary nebula (pPN) phase, obtained with the ESI and MIKE spectrographs at Keck-II and Magellan-I, respectively. The total wavelength range covered with ESI (MIKE) is ~3900 to 10900 A (~3600 to 7200A). In this paper, we focus our analysis mainly on the Halpha profiles. Prominent Halpha emission is detected in half of the objects, most of which show broad Halpha wings (up to ~4000 km/s). In the majority of the Halpha-emission sources, fast, post-AGB winds are revealed by P-Cygni profiles. In ~37% of the objects Halpha is observed in absorption. In almost all cases, the absorption profile is partially filled with emission, leading to complex, structured profiles that are interpreted as an indication of incipient post-AGB mass-loss. All sources in which Halpha is seen mainly in absorption have F-G type central stars, whereas sources with intense Halpha emission span a larger range of spectral types from O to G. Shocks may be an important excitation agent of the close stellar surroundings for objects with late type central stars. Sources with pure emission or P Cygni Halpha profiles have larger J-K color excess than objects with Halpha mainly in absorption, which suggests the presence of warm dust near the star in the former. The two classes of profile sources also segregate in the IRAS color-color diagram in a way that intense Halpha-emitters have dust grains with a larger range of temperatures. (abridged)



قيم البحث

اقرأ أيضاً

Long-slit spectroscopy with the Southern African Large Telescope (SALT) of central stars of mid-infrared nebulae detected with the Spitzer Space Telescope and Wide-field Infrared Survey Explorer (WISE) led to the discovery of numerous candidate lumin ous blue variables (cLBVs) and other rare evolved massive stars. With the recent advent of the SALT fibre-fed high-resolution echelle spectrograph (HRS), a new perspective for the study of these interesting objects is appeared. Using the HRS we obtained spectra of a dozen newly identified massive stars. Some results on the recently identified cLBV Hen 3-729 are presented.
In this paper (paper I) we present optical long-slit spectroscopy and imaging of the protoplanetary nebula CRL618. The optical lobes of CRL618 consist of shock-excited gas, which emits many recombination and forbidden lines, and dust, which scatters light from the innermost regions. From the analysis of the scattered Halpha emission, we derive a nebular inclination of i=24+-6 deg. The spectrum of the innermost part of the east lobe (visible as a bright, compact nebulosity close to the star in the Halpha HST image) is remarkably different from that of the shocked lobes but similar to that of the inner HII region, suggesting that this region represents the outermost parts of the latter. We find a non-linear radial variation of the gas velocity along the lobes. The largest projected LSR velocities (~80 km/s) are measured at the tips of the lobes, where the direct images show the presence of compact bow-shaped structures. The velocity of the shocks in CRL618 is in the range ~75-200 km/s, as derived from diagnostic line ratios and line profiles. We report a brightening (weakening) of [OIII]5007AA ([OI]6300AA) over the last ~10 years that may indicate a recent increase in the speed of the exciting shocks. From the analysis of the spatial variation of the nebular extinction, we find a large density contrast between the material inside the lobes and beyond them: the optical lobes seem to be `cavities excavated in the AGB envelope by interaction with a more tenuous post-AGB wind. The electron density, with a mean value n_e~5E3-1E4 cm-3, shows significant fluctuations but no systematic decrease along the lobes, in agreement with most line emission arising in a thin shell of shocked material (the lobe walls) rather than in the post-AGB wind filling the interior of the lobes. (...)
231 - R. Lopez , R. Estalella , G. Gomez 2009
HH 223 is a knotty, wiggling nebular emission of ~30 length found in the L723 star-forming region. It lies projected onto the largest blueshifted lobe of the cuadrupolar CO outflow powered by a low-mass YSO system embedded in the core of L723. We ana lysed the physical conditions and kinematics along HH 223 with the aim of disentangling whether the emission arises from shock-excited, supersonic gas characteristic of a stellar jet, or is only tracing the wall cavity excavated by the CO outflow. We performed long-slit optical spectroscopy along HH 223, crossing all the bright knots (A to E) and part of the low-brightness emission nebula (F filament). One spectrum of each knot, suitable to characterize the nature of its emission, was obtained. The physical conditions and the radial velocity of the HH 223 emission along the slits were also sampled at smaller scale (0.6) than the knot sizes. {The spectra of all the HH 223 knots appear as those of the intermediate/high excitation Herbig-Haro objects. The emission is supersonic, with blueshifted peak velocities ranging from -60 to -130 km/s. Reliable variations in the kinematics and physical conditions at smaller scale that the knot sizes are also found. The properties of the HH 223 emission derived from the spectroscopy confirm the HH nature of the object, the supersonic optical outflow most probably also being powered by the YSOs embedded in the L723 core.
119 - Y. D. Mayya , D. Rosa-Gonzalez , 2011
We here present the ages of four compact stellar clusters (CSCs) in the nearby spiral galaxy M81, using long-slit optical spectra obtained with the 10.4-m Gran Telescopio Canarias (GTC). All the four CSCs, including the brightest in this galaxy, are found to have ages between 5 to 6 Myr, with one of them showing Wolf-Rayet spectral features. The photometric masses of these clusters, calculated using their spectroscopically-derived ages, lie between 3000 and 18000 Msun. The observed clusters are among the brightest objects, and hence the most massive, in the entire disk of M81. This implies the absence of massive (1.0e5 Msun) compact stellar clusters in M81.
Context: At the end of their lives AGB stars are prolific producers of dust and gas. The details of this mass-loss process are still not understood very well. Herschel PACS and SPIRE spectra offer a unique way of investigating properties of AGB stars in general and the mass-loss process in particular. Methods: The HIPE software with the latest calibration is used to process the available PACS and SPIRE spectra of 40 evolved stars. The spectra are convolved with the response curves of the PACS and SPIRE bolometers and compared to the fluxes measured in imaging data of these sources. Custom software is used to identify lines in the spectra, and to determine the central wavelengths and line intensities. Standard molecular line databases are used to associate the observed lines. Because of the limited spectral resolution of the spectrometers several known lines are typically potential counterparts to any observed line. To help identifications the relative contributions in line intensity of the potential counterpart lines are listed for three characteristic temperatures based on LTE calculations and assuming optically thin emission. Result: The following data products are released: the reduced spectra, the lines that are measured in the spectra with wavelength, intensity, potential identifications, and the continuum spectra, i.e. the full spectra with all identified lines removed. As simple examples of how this data can be used in future studies we have fitted the continuum spectra with three power laws and find that the few OH/IR stars seem to have significantly steeper slopes than the other oxygen- and carbon-rich objects in the sample. As another example we constructed rotational diagrams for CO and fitted a two-component model to derive rotational temperatures.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا