ترغب بنشر مسار تعليمي؟ اضغط هنا

S-parameter and pseudo-Nambu-Goldstone boson mass from lattice QCD

114   0   0.0 ( 0 )
 نشر من قبل Norikazu Yamada
 تاريخ النشر 2008
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

We present a lattice calculation of $L_{10}$, one of the low energy constants in Chiral Perturbation Theory, and the charged-neutral pion squared mass splitting, using dynamical overlap fermion. Exact chiral symmetry of the overlap fermion allows us to reliably extract these quantities from the difference of the vacuum polarization functions for vector and axial-vector currents. In the context of the technicolor models, these two quantities are read as the $S$-parameter and the pseudo-Nambu-Goldstone boson mass respectively, and play an important role in discriminating the models from others. This calculation can serve as a feasibility study of the lattice techniques for more general technicolor gauge theories.



قيم البحث

اقرأ أيضاً

We consider chiral perturbation theory in a finite volume and in a mixed regime of quark masses. We take N_l light quarks near the chiral limit, in the so-called epsilon-regime, while the remaining N_h quarks are heavier and in the standard p-regime. We compute in this new mixed regime the finite-size scaling of the light meson correlators in the scalar, pseudoscalar, vector and axial vector channels.Using the replica method, we easily extend our results to the partially quenched theory. With the help of our results, lattice QCD simulations with 2+1 flavors can safely investigate pion physics with very light up and down quark masses even in the region where the pions correlation length overcomes the size of the space-time lattice.
285 - S. Durr , Z. Fodor (1 , 2 2007
We present preliminary results for the chiral behavior of charged pseudo-Goldstone-boson masses and decay constants. These are obtained in simulations with N_f=2+1 flavors of tree-level, O(a)-improved Wilson sea quarks. In these simulations, mesons a re composed of either valence quarks discretized in the same way as the sea quarks (unitary simulations) or of overlap valence quarks (mixed-action simulations). We find that the chiral behavior of the pseudoscalar meson masses in the mixed-action calculations cannot be explained with continuum, partially-quenched chiral perturbation theory. We show that the inclusion of O(a^2) unitarity violations in the chiral expansion resolves this discrepancy and that the size of the unitarity violations required are consistent with those which we observe in the zero-momentum, scalar-isotriplet-meson propagator.
If the Higgs boson is a pseudo Nambu-Goldstone boson (PNGB), the $hZgamma$ contact interaction induced by the $mathcal{O}(p^4)$ invariants of the non-linear sigma model is free from its nonlinearity effects. The process $hrightarrow Zgamma$ can be us ed to eliminate the universal effects of heavy particles, which can fake the nonlinearity effects of the PNGB Higgs boson in the process $hrightarrow V^*V$ ($V=W^pm$, $Z$). We demonstrate that the ratio of the signal strength of $hrightarrow Zgamma$ and $hrightarrow V^*V$ is good to distinguish the signature of the PNGB Higgs boson from Higgs coupling deviations.
The notion that the scalar listed as $f_0 (500)$ in the particle data booklet is a pseudo-Nambu-Goldstone (NG) boson of spontaneously broken scale symmetry, explicitly broken by a small departure from an infrared fixed point, is explored in nuclear d ynamics. That notion which puts the scalar -- that we shall identify as a dilaton -- on the same footing as the pseudo-scalar pseudo-NG bosons, i.e., octet $pi$, while providing a simple explanation for the $Delta I=1/2$ rule for kaon decay, generalizes the standard chiral perturbation theory (S$chi$PT) to scale chiral perturbation theory, denoted $chi$PT$_sigma$, with {it one infrared mass scale for both symmetries}, with the $sigma$ figuring as a chiral singlet NG mode in non-strange sector. Applied to nuclear dynamics, it is seen to provide possible answers to various hitherto unclarified nuclear phenomena such as the success of one-boson-exchange potentials (OBEP), the large cancellation of strongly attractive scalar potential by strongly repulsive vector potential in relativistic mean field theory of nuclear systems and in-medium QCD sum rules, the interplay of the dilaton and the vector meson $omega$ in dense skyrmion matter, the BPS skyrmion structure of nuclei accounting for small binding energies of medium-heavy nuclei, and the suppression of hyperon degrees of freedom in compact-star matter.
We exhibit a model in which a single pseudo-Nambu-Goldstone boson explains dark energy, inflation and baryogenesis. The model predicts correlated signals in future collider experiments, WIMP searches, proton decay experiments, dark energy probes, and the PLANCK satellite CMB measurements.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا