ترغب بنشر مسار تعليمي؟ اضغط هنا

Intermediate-mass fragments from fission and multifragmentation in the spallation of 136Xe

268   0   0.0 ( 0 )
 نشر من قبل Paolo Napolitani
 تاريخ النشر 2013
  مجال البحث
والبحث باللغة English




اسأل ChatGPT حول البحث

A correlation between the production and kinematic properties of the fragments issued of fission and multifragmentation is established in the study of the reaction 136Xe+hydrogen at 1 GeV per nucleon, measured in inverse kinematics at the FRagment Separator (GSI, Darmstadt). Such observables are analysed in a comprehensive study, selected as a function of the decay mode, and related to the isotopic properties of the fragments in the intermediate-mass region. Valuable information can be deduced on the characteristics of the heaviest product in the reaction, which has been considered a fundamental observable for tagging the thermodynamic properties of finite nuclear systems.



قيم البحث

اقرأ أيضاً

The isotope yields of fragments, produced in the decay of the quasiprojectile in Au+Au peripheral collisions at 35 MeV/nucleon and those coming from the disassembly of the unique source formed in Xe+Cu central reactions at 30 MeV/nucleon, were measur ed. We show that the relative yields of neutron-rich isotopes increase with the excitation energy in multifragmentation reaction. In the framework of the statistical multifragmentation model which fairly well reproduces the experimental observables, this behaviour can be explained by increasing N/Z ratio of hot primary fragments, that corresponds to the statistical evolution of the decay mechanism with the excitation energy: from a compound-like decay to complete multifragmentation.
Thermal multifragmentation of hot nuclei is interpreted as the nuclear liquid--fog phase transition deep inside the spinodal region. The experimental data for p(8.1GeV) + Au collisions are analyzed. It is concluded that the decay process of hot nucle i is characterized by two size parameters: transition state and freeze-out volumes. The similarity between dynamics of fragmentation and ordinary fission is discussed. The IMF emission time is related to the mean rupture time at the multi-scission point, which corresponds to the kinetic freeze-out configuration.
We study how the excitation energy of the fully accelerated fission fragments is built up. It is stressed that only the intrinsic excitation energy available before scission can be exchanged between the fission fragments to achieve thermal equilibriu m. This is in contradiction with most models used to calculate prompt neutron emission where it is assumed that the total excitation energy of the final fragments is shared between the fragments by the condition of equal temperatures. We also study the intrinsic excitation-energy partition according to a level density description with a transition from a constant-temperature regime to a Fermi-gas regime. Complete or partial excitation-energy sorting is found at energies well above the transition energy.
372 - A.S. Botvina 2008
In nuclear reactions induced by hadrons and ions of high energies, nuclei can disintegrate into many fragments during a short time (~100 fm/c). This phenomenon known as nuclear multifragmentation was under intensive investigation last 20 years. It wa s established that multifragmentation is an universal process taking place in all reactions when the excitation energy transferred to nuclei is high enough, more than 3 MeV per nucleon, independently on the initial dynamical stage of the reactions. Very known compound nucleus decay processes (sequential evaporation and fission), which are usual for low energies, disappear and multifragmentation dominates at high excitation energy. For this reason, calculation of multifragmentation must be carried on in all cases when production of highly excited nuclei is expected, including spallation reactions. From the other hand, one can consider multifragmentation as manifestation of the liquid-gas phase transition in finite nuclei. This gives way for studying nuclear matter at subnuclear densities and for applications of properties of nuclear matter extracted from multifragmentation reactions in astrophysics. In this contribution, the Statistical Multifragmentation Model (SMM), which combines the compound nucleus processes at low energies and multifragmentation at high energies, is described. The most important ingredients of the model are discussed.
Critical temperature Tc for the nuclear liquid-gas phase transition is stimated both from the multifragmentation and fission data. In the first case,the critical temperature is obtained by analysis of the IMF yields in p(8.1 GeV)+Au collisions within the statistical model of multifragmentation (SMM). In the second case, the experimental fission probability for excited 188Os is compared with the calculated one with Tc as a free parameter. It is concluded for both cases that the critical temperature is higher than 16 MeV.
التعليقات
جاري جلب التعليقات جاري جلب التعليقات
سجل دخول لتتمكن من متابعة معايير البحث التي قمت باختيارها
mircosoft-partner

هل ترغب بارسال اشعارات عن اخر التحديثات في شمرا-اكاديميا