ﻻ يوجد ملخص باللغة العربية
We propose a natural generalisation of the BLG multiple M2-brane action to membranes in curved plane wave backgrounds, and verify in two different ways that the action correctly captures the non-trivial space-time geometry. We show that the M2 to D2 reduction of the theory along a non-trivial direction in field space is equivalent to the D2-brane world-volume Yang-Mills theory with a non-trivial (null-time dependent) dilaton in the corresponding IIA background geometry. As another consistency check of this proposal we show that the properties of metric 3-algebras ensure the equivalence of the Rosen coordinate version of this action (time-dependent metric on the space of 3-algebra valued scalar fields, no mass terms) and its Brinkmann counterpart (constant couplings but time-dependent mass terms). We also establish an analogous result for deformed Yang-Mills theories in any dimension which, in particular, demonstrates the equivalence of the Rosen and Brinkmann forms of the plane wave matrix string action.
Motivated by the recent proposal of an N=8 supersymmetric action for multiple M2-branes, we study the Lie 3-algebra in detail. In particular, we focus on the fundamental identity and the relation with Nambu-Poisson bracket. Some new algebras not know
Based on the recent proposal of N=8 superconformal gauge theories of the multiple M2 branes, we derive (2+1)-dimensional supersymmetric Janus field theories with a space-time dependent coupling constant. From the original Bagger-Lambert model, we get
We consider periodic arrays of M2-branes in the ABJM model in the spirit of a circle compactification to D2-branes in type IIA string theory. The result is a curious formulation of three-dimensional maximally supersymmetric Yang-Mills theory in terms
We show the relation between three non trivial sectors of M2-brane theory formulated in the LCG connected among them by canonical transformations. These sectors correspond to the supermembrane theory formulated on a $M_9times T^2$ on three different
We show that M-theory admits a supersymmetric compactification to the Godel universe of the form Godel3 x S2 x CY3. We interpret this geometry as coming from the backreaction of M2-branes wrapping the S2 in an AdS3 x S2 x CY3 flux compactification. I